organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-(4-chloro­phen­yl)-2-methyl-5-oxo-5,6,7,8-tetra­hydro­quinoline-3-carboxyl­ate

aCatalytic Hydrogenation Research Center, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and bZhejiang Huanke Environment Consultancy Co.,Ltd, No. 111 Tianmushan Road, Hangzhou 310007, People's Republic of China
*Correspondence e-mail: chrc@zjut.edu.cn

(Received 1 April 2013; accepted 14 June 2013; online 19 June 2013)

In the title compound, C19H18ClNO3, the non-aromatic part of the fused ring system adopts an envelope conformation with the central methyl­ene C atom as the flap. The dihedral angle between the pyridine and benzene rings is 56.98 (3)°. In the crystal, mol­ecules are linked into double layers parallel to (100) by a network of weak C—H⋯O inter­actions.

Related literature

For the synthetic procedure, see: Fang et al. (2007[Fang, X., Liu, Y.-C. & Li, C. (2007). J. Org. Chem. 72, 8608-8610.]); Mirza-Aghayan et al. (2012[Mirza-Aghayan, M., Boukherroub, R., Nemati, M. & Rahimifard, M. (2012). Tetrahedron Lett. 53, 2473-2475.]). For a related structure, see: Sicheri et al. (1992[Sicheri, F. V., Derry, W. B., Gupta, R. S. & Yang, D. S.-C. (1992). Acta Cryst. C48, 1687-1689.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18ClNO3

  • Mr = 343.79

  • Monoclinic, P 21 /c

  • a = 12.5736 (7) Å

  • b = 8.3815 (4) Å

  • c = 17.4945 (8) Å

  • β = 112.151 (2)°

  • V = 1707.59 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.49 × 0.42 × 0.30 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.891, Tmax = 0.932

  • 15658 measured reflections

  • 3860 independent reflections

  • 2725 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.128

  • S = 1.00

  • 3860 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯O3i 0.97 2.67 3.454 (3) 139
C11—H11⋯O1ii 0.93 2.45 3.357 (2) 164
C12—H12⋯O3iii 0.93 2.70 3.569 (2) 156
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The pyridine nucleus is of substantial significance as it is the key component in a variety of bioactive compounds, both naturally occurring and synthetic. The oxidative aromatization of 1,4-dihydropyridines is a very convenient approach to the synthesis of highly substituted pyridines (Fang et al., 2007; Mirza-Aghayan et al., 2012). In this article, the title compound was synthesized from the oxidation of the corresponding 1,4-dihydropyridine, and the crystal structure of it is described (Fig. 1). The non-aromatic part of the fused ring is non-planar and adopts an envelope conformation. The α-carbon atom of the carbonyl lies on the same side of the fused ring with the ethyl group, whereas the β-carbon atom of the carbonyl was oriented in opposite direction. The dihedral angle between the pyridine ring and the benzene ring is 56.98 (3)°. In the crystal,molecules are linked by weak C—H···O interactions.

Related literature top

For the synthetic procedure, see: Fang et al. (2007); Mirza-Aghayan et al. (2012). For a related structure, see: Sicheri et al. (1992).

Experimental top

The mixture of 4-chlorobenzaldehyde (1 mmol), ethylacetoacetate (1 mmol) and 3-aminocyclohex-2-enone (1 mmol) was stirred at at 343 K for 3 h (monitored by TLC). Then the mixture was purified by flash column chromatography (silica gel, Hex/AcOEt, v/v, 3:1) giving the 1,4-dihydropyridine compound. The 1,4-dihydropyridine compound was further oxidized by H2O2 (2.0 equiv.) in the presence of the PEG1000-BMImI complex catalyst (50 mol%) to afford the title compound. The pure pruduct is obtained through recrystallation, and single crystals were obtained by slow evaporation of a dichloromethane/n-hexane (1:1 v/v) solution at room temperature.

Refinement top

Methyl H atoms were placed in calculated positions with C—H = 0.96 (1) Å and the torsion was refined to fit the electron density with Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated positions and treated as riding atoms: C—H = 0.97 (1) Å (sp3) and C—H = 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(C).

Structure description top

The pyridine nucleus is of substantial significance as it is the key component in a variety of bioactive compounds, both naturally occurring and synthetic. The oxidative aromatization of 1,4-dihydropyridines is a very convenient approach to the synthesis of highly substituted pyridines (Fang et al., 2007; Mirza-Aghayan et al., 2012). In this article, the title compound was synthesized from the oxidation of the corresponding 1,4-dihydropyridine, and the crystal structure of it is described (Fig. 1). The non-aromatic part of the fused ring is non-planar and adopts an envelope conformation. The α-carbon atom of the carbonyl lies on the same side of the fused ring with the ethyl group, whereas the β-carbon atom of the carbonyl was oriented in opposite direction. The dihedral angle between the pyridine ring and the benzene ring is 56.98 (3)°. In the crystal,molecules are linked by weak C—H···O interactions.

For the synthetic procedure, see: Fang et al. (2007); Mirza-Aghayan et al. (2012). For a related structure, see: Sicheri et al. (1992).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound. H atoms have been omitted for clarity.
Ethyl 4-(4-chlorophenyl)-2-methyl-5-oxo-5,6,7,8-tetrahydroquinoline-3-carboxylate top
Crystal data top
C19H18ClNO3F(000) = 720
Mr = 343.79Dx = 1.337 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10595 reflections
a = 12.5736 (7) Åθ = 3.1–27.4°
b = 8.3815 (4) ŵ = 0.24 mm1
c = 17.4945 (8) ÅT = 296 K
β = 112.151 (2)°Chunk, yellow
V = 1707.59 (15) Å30.49 × 0.42 × 0.30 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3860 independent reflections
Radiation source: rotating anode2725 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1616
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1010
Tmin = 0.891, Tmax = 0.932l = 1822
15658 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.6492P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3860 reflectionsΔρmax = 0.28 e Å3
220 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.043 (3)
Crystal data top
C19H18ClNO3V = 1707.59 (15) Å3
Mr = 343.79Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5736 (7) ŵ = 0.24 mm1
b = 8.3815 (4) ÅT = 296 K
c = 17.4945 (8) Å0.49 × 0.42 × 0.30 mm
β = 112.151 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3860 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2725 reflections with I > 2σ(I)
Tmin = 0.891, Tmax = 0.932Rint = 0.053
15658 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.00Δρmax = 0.28 e Å3
3860 reflectionsΔρmin = 0.26 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.42545 (16)0.6493 (2)0.58924 (11)0.0375 (4)
C20.41107 (17)0.7151 (2)0.51265 (11)0.0413 (4)
C30.50712 (19)0.7626 (2)0.49622 (12)0.0473 (5)
C40.62896 (17)0.6962 (2)0.62798 (12)0.0436 (4)
C50.75005 (18)0.7044 (3)0.69010 (14)0.0580 (6)
H5A0.76730.81420.70800.070*
H5B0.80180.67340.66330.070*
C60.77367 (19)0.6007 (3)0.76517 (14)0.0581 (6)
H6A0.84550.63290.80810.070*
H6B0.78110.49050.75110.070*
C70.67692 (18)0.6145 (3)0.79737 (12)0.0539 (5)
H7A0.69350.54750.84570.065*
H7B0.67070.72400.81320.065*
C80.56577 (17)0.5633 (2)0.73116 (12)0.0426 (4)
C90.53856 (16)0.6381 (2)0.64827 (11)0.0388 (4)
C100.32257 (15)0.6031 (2)0.60723 (11)0.0368 (4)
C110.30200 (17)0.6742 (2)0.67217 (11)0.0426 (4)
H110.35450.74750.70560.051*
C120.20518 (18)0.6381 (2)0.68790 (12)0.0466 (5)
H120.19220.68620.73150.056*
C130.12768 (16)0.5288 (2)0.63758 (12)0.0434 (4)
C140.14541 (17)0.4562 (2)0.57310 (12)0.0461 (5)
H140.09250.38290.54000.055*
C150.24351 (16)0.4933 (2)0.55776 (11)0.0426 (4)
H150.25620.44450.51420.051*
C160.29397 (18)0.7489 (2)0.44907 (11)0.0454 (5)
C170.1340 (2)0.9227 (3)0.41726 (18)0.0778 (8)
H17A0.07570.84300.41170.093*
H17B0.13650.94180.36330.093*
C180.1069 (2)1.0718 (3)0.4508 (2)0.0846 (8)
H18A0.10201.05080.50330.127*
H18B0.03481.11290.41340.127*
H18C0.16631.14880.45760.127*
C190.4969 (2)0.8326 (3)0.41431 (14)0.0654 (6)
H19A0.56310.89710.42160.098*
H19B0.42900.89740.39300.098*
H19C0.49200.74800.37610.098*
Cl10.00542 (5)0.48132 (7)0.65772 (4)0.0647 (2)
N10.61354 (15)0.7536 (2)0.55298 (11)0.0497 (4)
O10.50420 (13)0.46307 (17)0.74340 (9)0.0545 (4)
O20.24504 (13)0.86760 (17)0.47419 (9)0.0560 (4)
O30.25193 (14)0.68423 (19)0.38335 (9)0.0642 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0394 (10)0.0356 (9)0.0393 (10)0.0022 (7)0.0169 (8)0.0045 (7)
C20.0432 (11)0.0426 (10)0.0390 (10)0.0019 (8)0.0166 (8)0.0033 (7)
C30.0537 (13)0.0487 (11)0.0459 (11)0.0031 (9)0.0262 (10)0.0020 (8)
C40.0394 (11)0.0446 (10)0.0500 (11)0.0014 (8)0.0205 (9)0.0058 (8)
C50.0382 (12)0.0722 (14)0.0639 (14)0.0048 (10)0.0196 (10)0.0048 (11)
C60.0400 (12)0.0701 (14)0.0582 (13)0.0018 (10)0.0117 (10)0.0068 (10)
C70.0464 (12)0.0677 (13)0.0432 (11)0.0007 (10)0.0117 (9)0.0050 (9)
C80.0390 (10)0.0466 (10)0.0423 (10)0.0047 (8)0.0155 (8)0.0018 (8)
C90.0383 (10)0.0395 (9)0.0397 (10)0.0003 (7)0.0161 (8)0.0045 (7)
C100.0337 (9)0.0383 (9)0.0365 (9)0.0006 (7)0.0111 (7)0.0014 (7)
C110.0406 (11)0.0461 (10)0.0408 (10)0.0086 (8)0.0149 (8)0.0091 (8)
C120.0471 (12)0.0515 (11)0.0461 (11)0.0019 (8)0.0231 (9)0.0066 (8)
C130.0330 (10)0.0481 (10)0.0501 (11)0.0007 (8)0.0168 (8)0.0036 (8)
C140.0376 (11)0.0476 (10)0.0492 (11)0.0089 (8)0.0117 (9)0.0075 (8)
C150.0410 (11)0.0470 (10)0.0394 (10)0.0026 (8)0.0148 (8)0.0067 (7)
C160.0505 (12)0.0481 (10)0.0382 (10)0.0041 (9)0.0173 (9)0.0018 (8)
C170.0601 (16)0.0666 (15)0.0816 (18)0.0133 (12)0.0019 (13)0.0026 (13)
C180.0680 (18)0.0735 (17)0.112 (2)0.0162 (13)0.0335 (17)0.0057 (16)
C190.0703 (16)0.0826 (16)0.0528 (13)0.0089 (12)0.0341 (12)0.0065 (11)
Cl10.0444 (3)0.0791 (4)0.0791 (4)0.0094 (3)0.0330 (3)0.0020 (3)
N10.0463 (10)0.0581 (10)0.0523 (10)0.0038 (8)0.0271 (8)0.0016 (8)
O10.0472 (9)0.0600 (9)0.0539 (9)0.0002 (7)0.0163 (7)0.0149 (7)
O20.0498 (9)0.0548 (8)0.0536 (9)0.0088 (6)0.0084 (7)0.0054 (6)
O30.0649 (11)0.0769 (10)0.0418 (8)0.0010 (8)0.0100 (7)0.0117 (7)
Geometric parameters (Å, º) top
C1—C21.396 (3)C10—C111.391 (3)
C1—C91.411 (3)C11—C121.379 (3)
C1—C101.493 (3)C11—H110.9300
C2—C31.400 (3)C12—C131.385 (3)
C2—C161.500 (3)C12—H120.9300
C3—N11.334 (3)C13—C141.372 (3)
C3—C191.509 (3)C13—Cl11.748 (2)
C4—N11.341 (3)C14—C151.393 (3)
C4—C91.400 (3)C14—H140.9300
C4—C51.502 (3)C15—H150.9300
C5—C61.508 (3)C16—O31.199 (2)
C5—H5A0.9700C16—O21.329 (2)
C5—H5B0.9700C17—O21.451 (3)
C6—C71.525 (3)C17—C181.474 (4)
C6—H6A0.9700C17—H17A0.9700
C6—H6B0.9700C17—H17B0.9700
C7—C81.503 (3)C18—H18A0.9600
C7—H7A0.9700C18—H18B0.9600
C7—H7B0.9700C18—H18C0.9600
C8—O11.215 (2)C19—H19A0.9600
C8—C91.496 (3)C19—H19B0.9600
C10—C151.391 (2)C19—H19C0.9600
C2—C1—C9117.32 (17)C12—C11—C10121.26 (17)
C2—C1—C10119.73 (16)C12—C11—H11119.4
C9—C1—C10122.86 (16)C10—C11—H11119.4
C1—C2—C3119.96 (18)C11—C12—C13118.74 (18)
C1—C2—C16121.46 (17)C11—C12—H12120.6
C3—C2—C16118.39 (17)C13—C12—H12120.6
N1—C3—C2122.12 (18)C14—C13—C12121.52 (18)
N1—C3—C19115.56 (19)C14—C13—Cl1119.53 (15)
C2—C3—C19122.3 (2)C12—C13—Cl1118.95 (15)
N1—C4—C9122.76 (18)C13—C14—C15119.31 (17)
N1—C4—C5115.12 (18)C13—C14—H14120.3
C9—C4—C5122.07 (18)C15—C14—H14120.3
C4—C5—C6114.62 (18)C10—C15—C14120.33 (17)
C4—C5—H5A108.6C10—C15—H15119.8
C6—C5—H5A108.6C14—C15—H15119.8
C4—C5—H5B108.6O3—C16—O2124.34 (19)
C6—C5—H5B108.6O3—C16—C2125.48 (19)
H5A—C5—H5B107.6O2—C16—C2110.09 (16)
C5—C6—C7110.81 (18)O2—C17—C18107.7 (2)
C5—C6—H6A109.5O2—C17—H17A110.2
C7—C6—H6A109.5C18—C17—H17A110.2
C5—C6—H6B109.5O2—C17—H17B110.2
C7—C6—H6B109.5C18—C17—H17B110.2
H6A—C6—H6B108.1H17A—C17—H17B108.5
C8—C7—C6109.46 (17)C17—C18—H18A109.5
C8—C7—H7A109.8C17—C18—H18B109.5
C6—C7—H7A109.8H18A—C18—H18B109.5
C8—C7—H7B109.8C17—C18—H18C109.5
C6—C7—H7B109.8H18A—C18—H18C109.5
H7A—C7—H7B108.2H18B—C18—H18C109.5
O1—C8—C9122.17 (17)C3—C19—H19A109.5
O1—C8—C7122.06 (18)C3—C19—H19B109.5
C9—C8—C7115.71 (17)H19A—C19—H19B109.5
C4—C9—C1118.81 (17)C3—C19—H19C109.5
C4—C9—C8118.73 (17)H19A—C19—H19C109.5
C1—C9—C8122.44 (17)H19B—C19—H19C109.5
C15—C10—C11118.84 (17)C3—N1—C4118.87 (17)
C15—C10—C1120.88 (16)C16—O2—C17117.20 (17)
C11—C10—C1120.24 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O3i0.972.673.454 (3)139
C11—H11···O1ii0.932.453.357 (2)164
C12—H12···O3iii0.932.703.569 (2)156
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+3/2; (iii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H18ClNO3
Mr343.79
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.5736 (7), 8.3815 (4), 17.4945 (8)
β (°) 112.151 (2)
V3)1707.59 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.49 × 0.42 × 0.30
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.891, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
15658, 3860, 2725
Rint0.053
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.128, 1.00
No. of reflections3860
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.26

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O3i0.972.6673.454 (3)139
C11—H11···O1ii0.932.4543.357 (2)164
C12—H12···O3iii0.932.7013.569 (2)156
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+3/2; (iii) x, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (No. Y4110373). We are also grateful for the help of Professor Jian-Ming Gu of Zhejiang University.

References

First citationFang, X., Liu, Y.-C. & Li, C. (2007). J. Org. Chem. 72, 8608–8610.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMirza-Aghayan, M., Boukherroub, R., Nemati, M. & Rahimifard, M. (2012). Tetrahedron Lett. 53, 2473–2475.  CAS Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSicheri, F. V., Derry, W. B., Gupta, R. S. & Yang, D. S.-C. (1992). Acta Cryst. C48, 1687–1689.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds