organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl N-(di­meth­­oxy­phosphor­yl)carbamate

aDepartment of Inorganic Chemistry, Kiev National Taras Shevchenko University, Vladimirskaya St. 64/13, Kiev 01601, Ukraine
*Correspondence e-mail: ovchynnikov@univ.kiev.ua

(Received 30 May 2013; accepted 26 June 2013; online 29 June 2013)

In the title compound, CH3OC(O)NHP(O)(OCH3)2, the P atom has a slightly distorted tetra­hedral configuration. The mixed imide moiety can be described as cisoid–transoid in which the two opposing dipoles (P=O and C=O) are oriented with a O=C⋯P=O torsion angle of 150.88(18)°. In the crystal, molecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers.

Related literature

For the use of phospho­rylated carbamides as potential new ligands, see: Safin et al. (2009[Safin, D. A., Bolte, M., Shakirova, E. R. & Babashkina, M. G. (2009). Polyhedron, 28, 501-501.]); Znovjyak et al. (2009[Znovjyak, K. O., Moroz, O. V., Ovchynnikov, V. A., Sliva, T. Yu., Shishkina, S. V. & Amirkhanov, V. M. (2009). Polyhedron, 28, 3731-3738.]); Sokolov et al. (2008[Sokolov, F. D., Brusko, V. V., Safin, D. A., Cherkasov, R. A. & Zabirov, N. G. (2008). Transition Metal Chemistry: New Research, edited by B. Varga & L. Kis, pp. 101-150. Hauppauge, NY: Nova Science Publishers Inc.]). For their biological activity, see: Amirkhanov et al. (1996[Amirkhanov, V., Ovchynnikov, V., Legendziewicz, J., Graczyk, A., Hanuza, J. & Masalik, L. (1996). Acta Phys. Pol. A, 90, 455-460.]); Rebrova et al. (1984[Rebrova, O. H., Biyushkin, V. N., Malinovskiy, T. I., Procenko, L. D. & Dneprova, T. N. (1984). Dokl. Akad. Nauk SSSR, 274, 328-332.]); Tsibulskaya & Orlacheva (1956[Tsibulskaya, N. P. & Orlacheva, K. A. (1956). DAN UkrSSR, pp. 602-606.]). For P=O bond lengths, see: Mizrahi & Modro (1982[Mizrahi, V. & Modro, T. A. (1982). Cryst. Struct. Commun. 11, 627-631.]): Amirkhanov et al. (1997[Amirkhanov, V. M., Ovchynnikov, V. A., Glowiak, T. & Kozlowski, H. (1997). Z. Naturforsch. Teil B, 52, 1331-1336.]). For the synthesis of the title compound, see: Kirsanov & Marenetc (1959[Kirsanov, A. V. & Marenetc, M. C. (1959). Russ. J. Gen. Chem. 29, 2256-2262.]). For short O⋯O contacts see: Bianchi et al. (2000[Bianchi, R., Gervasio, G. & Marabello, D. (2000). Inorg. Chem. 39, 2360-2366.]); Zhurova et al. (2002[Zhurova, E. A., Tsirelson, V. G., Stash, A. I. & Pinkerton, A. A. (2002). J. Am. Chem. Soc. 124, 4574-4575.])

[Scheme 1]

Experimental

Crystal data
  • C4H10NO5P

  • Mr = 183.10

  • Triclinic, [P \overline 1]

  • a = 6.441 (1) Å

  • b = 7.018 (1) Å

  • c = 9.298 (2) Å

  • α = 99.05 (3)°

  • β = 96.70 (3)°

  • γ = 100.54 (3)°

  • V = 403.46 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.25 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.910, Tmax = 0.924

  • 1417 measured reflections

  • 1417 independent reflections

  • 1322 reflections with I > 2σ(I)

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.133

  • S = 1.04

  • 1417 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected geometric parameters (Å, °)

P1—O1 1.451 (2)
P1—O4 1.556 (2)
P1—O3 1.573 (2)
P1—O2 3.126 (2)
P1—N1 1.658 (2)
O2—O4 2.938 (3)
O1—P1—O4 117.63 (12)
O1—P1—O3 109.28 (13)
O4—P1—O3 101.56 (12)
O1—P1—N1 109.55 (12)
O4—P1—N1 108.84 (12)
O3—P1—N1 109.57 (13)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 1.99 2.847 (3) 171
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Phosphorylated carbamate of the general formula ROC(O)NHP(O)R2 are potential new ligands for metal ions (Sokolov et al. 2008). Many of these compounds also show biological activity (Amirkhanov et al. 1996, Rebrova et al. 1984, Tsibulskaya et al. 1956). This work reports the structure of methyl(dimethoxyphosphoryl)carbamate (I) (C4H10NO5P).

In the title compound (I), the phosphorus atom has a slightly distorted tetrahedral configuration. The average values of the angles OPN and OPO in the molecule are close to the tetrahedral, with the exception O3—P1—O4 and O1–P1–O4, which can be explained by interaction of nucleophilic carbonyl oxygen atom O2 with electrophilic phosphorus atom P1, corresponding distance less than the sum of the Van der Waals Radii 3.3 Å. There is repulsion between the oxygen atoms O2 and O4 distorting the tetrahedral environment of the phosphorus atom, the O···O distance is less than the sum of the Van der Waals radii 3.04 Å. Short O···O interactions have also been reported for dinitramide anion (Zhurova et al., 2002) and dimanganese decacarbonyl (Bianchi et al., 2000).

The P1–O1 and P1–N1 bond lengths for compound (I) have values 1.451 Å and 1.658 Å, which are typical for carbacylamidophosphates with ether-type substituents (Amirkhanov et al. 1997). The mixed imide moiety can be described as cisoid-transoid in which the two opposing dipoles (P=O and C=O) are oriented with torsion angle O2=C1···P1=O1 150.88 (18)° (Fig.1).

Molecules are linked in centrosymmetric dimmers by hydrogen bonds of the phosphoryl oxygen atoms and the hydrogen atoms of the C(O)N(H)P(O) groups of neighboring molecules (Fig.2, Table 2).

Fragment C4 O5 C1 O2 N1 P1 is practically planar, with deviations from the mean plane not exceeding 0.052 (2) Å. The O1 and O4 atoms are adjacent to it with deviations of 0.453 (3) Å and 0.582 (3) Å, respectively. The P=O bond has an angle of deviation from this plane of 23.4 (2)°.

Related literature top

For the use of phosphorylated carbamide as potential new ligands, see: Safin et al. (2009); Znovjyak et al. (2009); Sokolov et al. (2008). For their biological activity, see: Amirkhanov et al. (1996); Rebrova et al. (1984); Tsibulskaya et al. (1956). For PO bond lengths, see: Mizrahi et al., (1982): Amirkhanov et al. (1997). For the synthesis of the title compound, see: Kirsanov et al., (1959). For short O···O contacts see: Bianchi et al. (2000); Zhurova et al. (2002)

Experimental top

All chemicals were commercial products of reagent grade, used without further purification. Methyl(dimethoxyphosphoryl)carbamate (I) was prepared as in (Kirsanov et al. 1959). Single crystals of (I) were prepared by slow crystallization from benzene solution.

Refinement top

The H atoms bonded to C and N were located in differnce Fourier maps but subsequently introduced in calculated positions and treated as riding on their parent atoms (C or N) with C–H = 0.98 Å with Uiso(H) = 1.5 and N–H = 0.86 Å with Uiso (H) = 1.2 Ueq.

Structure description top

Phosphorylated carbamate of the general formula ROC(O)NHP(O)R2 are potential new ligands for metal ions (Sokolov et al. 2008). Many of these compounds also show biological activity (Amirkhanov et al. 1996, Rebrova et al. 1984, Tsibulskaya et al. 1956). This work reports the structure of methyl(dimethoxyphosphoryl)carbamate (I) (C4H10NO5P).

In the title compound (I), the phosphorus atom has a slightly distorted tetrahedral configuration. The average values of the angles OPN and OPO in the molecule are close to the tetrahedral, with the exception O3—P1—O4 and O1–P1–O4, which can be explained by interaction of nucleophilic carbonyl oxygen atom O2 with electrophilic phosphorus atom P1, corresponding distance less than the sum of the Van der Waals Radii 3.3 Å. There is repulsion between the oxygen atoms O2 and O4 distorting the tetrahedral environment of the phosphorus atom, the O···O distance is less than the sum of the Van der Waals radii 3.04 Å. Short O···O interactions have also been reported for dinitramide anion (Zhurova et al., 2002) and dimanganese decacarbonyl (Bianchi et al., 2000).

The P1–O1 and P1–N1 bond lengths for compound (I) have values 1.451 Å and 1.658 Å, which are typical for carbacylamidophosphates with ether-type substituents (Amirkhanov et al. 1997). The mixed imide moiety can be described as cisoid-transoid in which the two opposing dipoles (P=O and C=O) are oriented with torsion angle O2=C1···P1=O1 150.88 (18)° (Fig.1).

Molecules are linked in centrosymmetric dimmers by hydrogen bonds of the phosphoryl oxygen atoms and the hydrogen atoms of the C(O)N(H)P(O) groups of neighboring molecules (Fig.2, Table 2).

Fragment C4 O5 C1 O2 N1 P1 is practically planar, with deviations from the mean plane not exceeding 0.052 (2) Å. The O1 and O4 atoms are adjacent to it with deviations of 0.453 (3) Å and 0.582 (3) Å, respectively. The P=O bond has an angle of deviation from this plane of 23.4 (2)°.

For the use of phosphorylated carbamide as potential new ligands, see: Safin et al. (2009); Znovjyak et al. (2009); Sokolov et al. (2008). For their biological activity, see: Amirkhanov et al. (1996); Rebrova et al. (1984); Tsibulskaya et al. (1956). For PO bond lengths, see: Mizrahi et al., (1982): Amirkhanov et al. (1997). For the synthesis of the title compound, see: Kirsanov et al., (1959). For short O···O contacts see: Bianchi et al. (2000); Zhurova et al. (2002)

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A view of the title compound showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Intermolecular contacts, hydrogen bonds shown as dashed lines.
Methyl N-(dimethoxyphosphoryl)carbamate top
Crystal data top
C4H10NO5PZ = 2
Mr = 183.10F(000) = 192
Triclinic, P1Dx = 1.507 Mg m3
Hall symbol: -P 1Melting point: 337 K
a = 6.441 (1) ÅMo Kα radiation, λ = 0.71069 Å
b = 7.018 (1) ÅCell parameters from 1635 reflections
c = 9.298 (2) Åθ = 2.2–25.0°
α = 99.05 (3)°µ = 0.32 mm1
β = 96.70 (3)°T = 293 K
γ = 100.54 (3)°Block, colourless
V = 403.46 (14) Å30.30 × 0.30 × 0.25 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1322 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.5°, θmin = 2.2°
ω/Θ scansh = 07
Absorption correction: ψ scan
(North et al., 1968)
k = 88
Tmin = 0.910, Tmax = 0.924l = 1010
1417 measured reflections3 standard reflections every 200 reflections
1417 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0766P)2 + 0.3565P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
1417 reflectionsΔρmax = 0.74 e Å3
101 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.38 (3)
Crystal data top
C4H10NO5Pγ = 100.54 (3)°
Mr = 183.10V = 403.46 (14) Å3
Triclinic, P1Z = 2
a = 6.441 (1) ÅMo Kα radiation
b = 7.018 (1) ŵ = 0.32 mm1
c = 9.298 (2) ÅT = 293 K
α = 99.05 (3)°0.30 × 0.30 × 0.25 mm
β = 96.70 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1322 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.910, Tmax = 0.9243 standard reflections every 200 reflections
1417 measured reflections intensity decay: 1%
1417 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.04Δρmax = 0.74 e Å3
1417 reflectionsΔρmin = 0.37 e Å3
101 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.12950 (10)0.49103 (10)0.73507 (7)0.0377 (3)
O10.0897 (3)0.4420 (3)0.6611 (2)0.0544 (6)
O40.1726 (3)0.5989 (3)0.8985 (2)0.0502 (6)
O30.2109 (4)0.2955 (3)0.7485 (3)0.0576 (6)
O20.5735 (3)0.7814 (3)0.8088 (2)0.0574 (6)
O50.5569 (3)0.8030 (3)0.5700 (2)0.0503 (6)
N10.2820 (3)0.6223 (3)0.6387 (3)0.0420 (6)
H1N0.22920.61640.54840.050*
C30.1084 (6)0.7823 (5)0.9409 (4)0.0648 (9)
H3A0.14790.82641.04530.097*
H3B0.04360.76430.91550.097*
H3C0.17800.87900.89030.097*
C20.4229 (6)0.2930 (5)0.8115 (5)0.0668 (9)
H2A0.43850.15910.80850.100*
H2B0.45010.36120.91190.100*
H2C0.52290.35720.75660.100*
C10.4822 (4)0.7395 (4)0.6847 (3)0.0388 (6)
C40.7664 (5)0.9297 (5)0.6001 (4)0.0560 (8)
H4A0.80540.96720.51050.084*
H4B0.86840.86050.64000.084*
H4C0.76471.04550.67000.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0299 (4)0.0452 (5)0.0342 (5)0.0002 (3)0.0036 (3)0.0054 (3)
O10.0403 (11)0.0678 (13)0.0464 (13)0.0103 (9)0.0021 (9)0.0123 (10)
O40.0469 (11)0.0594 (12)0.0423 (13)0.0087 (9)0.0053 (9)0.0069 (9)
O30.0582 (13)0.0456 (11)0.0650 (15)0.0035 (9)0.0062 (11)0.0084 (10)
O20.0387 (11)0.0747 (15)0.0468 (14)0.0092 (10)0.0027 (9)0.0066 (10)
O50.0385 (11)0.0550 (12)0.0500 (13)0.0104 (8)0.0027 (8)0.0138 (9)
N10.0351 (11)0.0490 (12)0.0355 (13)0.0065 (9)0.0007 (9)0.0100 (10)
C30.063 (2)0.0623 (19)0.064 (2)0.0168 (16)0.0072 (16)0.0071 (16)
C20.065 (2)0.0559 (18)0.081 (3)0.0213 (16)0.0028 (18)0.0142 (17)
C10.0321 (12)0.0388 (13)0.0426 (16)0.0031 (10)0.0034 (11)0.0054 (11)
C40.0374 (15)0.0576 (17)0.066 (2)0.0091 (12)0.0085 (13)0.0117 (15)
Geometric parameters (Å, º) top
P1—O11.451 (2)N1—C11.377 (3)
P1—O41.556 (2)N1—H1N0.8600
P1—O31.573 (2)C3—H3A0.9600
P1—N11.658 (2)C3—H3B0.9600
P1—O23.126 (2)C3—H3C0.9600
O4—C31.434 (4)C2—H2A0.9600
O4—O22.938 (3)C2—H2B0.9600
O3—C21.427 (4)C2—H2C0.9600
O2—C11.198 (3)C4—H4A0.9600
O5—C11.326 (3)C4—H4B0.9600
O5—C41.444 (3)C4—H4C0.9600
O1—P1—O4117.63 (12)O4—C3—H3B109.5
O1—P1—O3109.28 (13)H3A—C3—H3B109.5
O4—P1—O3101.56 (12)O4—C3—H3C109.5
O1—P1—N1109.55 (12)H3A—C3—H3C109.5
O4—P1—N1108.84 (12)H3B—C3—H3C109.5
O3—P1—N1109.57 (13)O3—C2—H2A109.5
O1—P1—O2149.38 (10)O3—C2—H2B109.5
O4—P1—O268.54 (9)H2A—C2—H2B109.5
O3—P1—O297.78 (10)O3—C2—H2C109.5
N1—P1—O245.52 (9)H2A—C2—H2C109.5
C3—O4—P1121.2 (2)H2B—C2—H2C109.5
C3—O4—O294.46 (19)O2—C1—O5125.1 (2)
P1—O4—O281.92 (10)O2—C1—N1125.7 (3)
C2—O3—P1123.2 (2)O5—C1—N1109.1 (2)
C1—O2—O487.22 (16)O5—C4—H4A109.5
C1—O2—P160.15 (15)O5—C4—H4B109.5
C1—O5—C4116.0 (2)H4A—C4—H4B109.5
C1—N1—P1128.4 (2)O5—C4—H4C109.5
C1—N1—H1N115.8H4A—C4—H4C109.5
P1—N1—H1N115.8H4B—C4—H4C109.5
O4—C3—H3A109.5
O1—P1—O4—C356.6 (3)N1—P1—O2—C13.4 (2)
O3—P1—O4—C3175.8 (2)O1—P1—O2—O4108.3 (2)
N1—P1—O4—C368.7 (2)O3—P1—O2—O499.42 (13)
O2—P1—O4—C390.3 (2)N1—P1—O2—O4150.72 (16)
O1—P1—O4—O2146.92 (12)O1—P1—N1—C1161.9 (2)
O3—P1—O4—O293.90 (11)O4—P1—N1—C132.0 (3)
N1—P1—O4—O221.63 (11)O3—P1—N1—C178.2 (3)
O1—P1—O3—C2177.8 (2)O2—P1—N1—C13.27 (19)
O4—P1—O3—C257.2 (3)O4—O2—C1—O5169.5 (3)
N1—P1—O3—C257.8 (3)P1—O2—C1—O5178.1 (3)
O2—P1—O3—C212.3 (3)O4—O2—C1—N18.8 (3)
C3—O4—O2—C198.7 (2)P1—O2—C1—N13.6 (2)
P1—O4—O2—C122.27 (18)C4—O5—C1—O21.1 (4)
C3—O4—O2—P1120.9 (2)C4—O5—C1—N1179.7 (2)
O1—P1—O2—C145.8 (3)P1—N1—C1—O27.5 (4)
O4—P1—O2—C1154.1 (2)P1—N1—C1—O5173.93 (19)
O3—P1—O2—C1106.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.861.992.847 (3)171
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC4H10NO5P
Mr183.10
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.441 (1), 7.018 (1), 9.298 (2)
α, β, γ (°)99.05 (3), 96.70 (3), 100.54 (3)
V3)403.46 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.30 × 0.30 × 0.25
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.910, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
1417, 1417, 1322
Rint0.000
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.133, 1.04
No. of reflections1417
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.37

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), WinGX (Farrugia, 2012).

Selected geometric parameters (Å, º) top
P1—O11.451 (2)P1—O23.126 (2)
P1—O41.556 (2)O4—O22.938 (3)
P1—O31.573 (2)O2—C11.198 (3)
P1—N11.658 (2)N1—C11.377 (3)
O1—P1—O4117.63 (12)O1—P1—N1109.55 (12)
O1—P1—O3109.28 (13)O4—P1—N1108.84 (12)
O4—P1—O3101.56 (12)O3—P1—N1109.57 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.861.992.847 (3)171
Symmetry code: (i) x, y+1, z+1.
 

References

First citationAmirkhanov, V. M., Ovchynnikov, V. A., Glowiak, T. & Kozlowski, H. (1997). Z. Naturforsch. Teil B, 52, 1331–1336.  CAS Google Scholar
First citationAmirkhanov, V., Ovchynnikov, V., Legendziewicz, J., Graczyk, A., Hanuza, J. & Masalik, L. (1996). Acta Phys. Pol. A, 90, 455–460.  CAS Google Scholar
First citationBianchi, R., Gervasio, G. & Marabello, D. (2000). Inorg. Chem. 39, 2360–2366.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKirsanov, A. V. & Marenetc, M. C. (1959). Russ. J. Gen. Chem. 29, 2256–2262.  CAS Google Scholar
First citationMizrahi, V. & Modro, T. A. (1982). Cryst. Struct. Commun. 11, 627–631.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRebrova, O. H., Biyushkin, V. N., Malinovskiy, T. I., Procenko, L. D. & Dneprova, T. N. (1984). Dokl. Akad. Nauk SSSR, 274, 328–332.  CAS PubMed Web of Science Google Scholar
First citationSafin, D. A., Bolte, M., Shakirova, E. R. & Babashkina, M. G. (2009). Polyhedron, 28, 501–501.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSokolov, F. D., Brusko, V. V., Safin, D. A., Cherkasov, R. A. & Zabirov, N. G. (2008). Transition Metal Chemistry: New Research, edited by B. Varga & L. Kis, pp. 101–150. Hauppauge, NY: Nova Science Publishers Inc.  Google Scholar
First citationTsibulskaya, N. P. & Orlacheva, K. A. (1956). DAN UkrSSR, pp. 602–606.  Google Scholar
First citationZhurova, E. A., Tsirelson, V. G., Stash, A. I. & Pinkerton, A. A. (2002). J. Am. Chem. Soc. 124, 4574–4575.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZnovjyak, K. O., Moroz, O. V., Ovchynnikov, V. A., Sliva, T. Yu., Shishkina, S. V. & Amirkhanov, V. M. (2009). Polyhedron, 28, 3731–3738.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds