supplementary materials


gg2115 scheme

Acta Cryst. (2013). E69, o1188-o1189    [ doi:10.1107/S1600536813017637 ]

Methyl N-(dimethoxyphosphoryl)carbamate

V. Ovchynnikov

Abstract top

In the title compound, CH3OC(O)NHP(O)(OCH3)2, the P atom has a slightly distorted tetrahedral configuration. The mixed imide moiety can be described as cisoid-transoid in which the two opposing dipoles (P=O and C=O) are oriented with a O=C...P=O torsion angle of 150.88(18)°. In the crystal, molecules are linked by pairs of N-H...O hydrogen bonds, forming inversion dimers.

Comment top

Phosphorylated carbamate of the general formula ROC(O)NHP(O)R2 are potential new ligands for metal ions (Sokolov et al. 2008). Many of these compounds also show biological activity (Amirkhanov et al. 1996, Rebrova et al. 1984, Tsibulskaya et al. 1956). This work reports the structure of methyl(dimethoxyphosphoryl)carbamate (I) (C4H10NO5P).

In the title compound (I), the phosphorus atom has a slightly distorted tetrahedral configuration. The average values of the angles OPN and OPO in the molecule are close to the tetrahedral, with the exception O3—P1—O4 and O1–P1–O4, which can be explained by interaction of nucleophilic carbonyl oxygen atom O2 with electrophilic phosphorus atom P1, corresponding distance less than the sum of the Van der Waals Radii 3.3 Å. There is repulsion between the oxygen atoms O2 and O4 distorting the tetrahedral environment of the phosphorus atom, the O···O distance is less than the sum of the Van der Waals radii 3.04 Å. Short O···O interactions have also been reported for dinitramide anion (Zhurova et al., 2002) and dimanganese decacarbonyl (Bianchi et al., 2000).

The P1–O1 and P1–N1 bond lengths for compound (I) have values 1.451 Å and 1.658 Å, which are typical for carbacylamidophosphates with ether-type substituents (Amirkhanov et al. 1997). The mixed imide moiety can be described as cisoid-transoid in which the two opposing dipoles (P=O and C=O) are oriented with torsion angle O2=C1···P1=O1 150.88 (18)° (Fig.1).

Molecules are linked in centrosymmetric dimmers by hydrogen bonds of the phosphoryl oxygen atoms and the hydrogen atoms of the C(O)N(H)P(O) groups of neighboring molecules (Fig.2, Table 2).

Fragment C4 O5 C1 O2 N1 P1 is practically planar, with deviations from the mean plane not exceeding 0.052 (2) Å. The O1 and O4 atoms are adjacent to it with deviations of 0.453 (3) Å and 0.582 (3) Å, respectively. The P=O bond has an angle of deviation from this plane of 23.4 (2)°.

Related literature top

For the use of phosphorylated carbamide as potential new ligands, see: Safin et al. (2009); Znovjyak et al. (2009); Sokolov et al. (2008). For their biological activity, see: Amirkhanov et al. (1996); Rebrova et al. (1984); Tsibulskaya et al. (1956). For PO bond lengths, see: Mizrahi et al., (1982): Amirkhanov et al. (1997). For the synthesis of the title compound, see: Kirsanov et al., (1959). For short O···O contacts see: Bianchi et al. (2000); Zhurova et al. (2002)

Experimental top

All chemicals were commercial products of reagent grade, used without further purification. Methyl(dimethoxyphosphoryl)carbamate (I) was prepared as in (Kirsanov et al. 1959). Single crystals of (I) were prepared by slow crystallization from benzene solution.

Refinement top

The H atoms bonded to C and N were located in differnce Fourier maps but subsequently introduced in calculated positions and treated as riding on their parent atoms (C or N) with C–H = 0.98 Å with Uiso(H) = 1.5 and N–H = 0.86 Å with Uiso (H) = 1.2 Ueq.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A view of the title compound showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Intermolecular contacts, hydrogen bonds shown as dashed lines.
Methyl N-(dimethoxyphosphoryl)carbamate top
Crystal data top
C4H10NO5PZ = 2
Mr = 183.10F(000) = 192
Triclinic, P1Dx = 1.507 Mg m3
Hall symbol: -P 1Melting point: 337 K
a = 6.441 (1) ÅMo Kα radiation, λ = 0.71069 Å
b = 7.018 (1) ÅCell parameters from 1635 reflections
c = 9.298 (2) Åθ = 2.2–25.0°
α = 99.05 (3)°µ = 0.32 mm1
β = 96.70 (3)°T = 293 K
γ = 100.54 (3)°Block, colourless
V = 403.46 (14) Å30.30 × 0.30 × 0.25 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1322 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.5°, θmin = 2.2°
ω/Θ scansh = 07
Absorption correction: ψ scan
(North et al., 1968)
k = 88
Tmin = 0.910, Tmax = 0.924l = 1010
1417 measured reflections3 standard reflections every 200 reflections
1417 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0766P)2 + 0.3565P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
1417 reflectionsΔρmax = 0.74 e Å3
101 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.38 (3)
Crystal data top
C4H10NO5Pγ = 100.54 (3)°
Mr = 183.10V = 403.46 (14) Å3
Triclinic, P1Z = 2
a = 6.441 (1) ÅMo Kα radiation
b = 7.018 (1) ŵ = 0.32 mm1
c = 9.298 (2) ÅT = 293 K
α = 99.05 (3)°0.30 × 0.30 × 0.25 mm
β = 96.70 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1322 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.910, Tmax = 0.924θmax = 25.5°
1417 measured reflections3 standard reflections every 200 reflections
1417 independent reflections intensity decay: 1%
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.133Δρmax = 0.74 e Å3
S = 1.04Δρmin = 0.37 e Å3
1417 reflectionsAbsolute structure: ?
101 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.12950 (10)0.49103 (10)0.73507 (7)0.0377 (3)
O10.0897 (3)0.4420 (3)0.6611 (2)0.0544 (6)
O40.1726 (3)0.5989 (3)0.8985 (2)0.0502 (6)
O30.2109 (4)0.2955 (3)0.7485 (3)0.0576 (6)
O20.5735 (3)0.7814 (3)0.8088 (2)0.0574 (6)
O50.5569 (3)0.8030 (3)0.5700 (2)0.0503 (6)
N10.2820 (3)0.6223 (3)0.6387 (3)0.0420 (6)
H1N0.22920.61640.54840.050*
C30.1084 (6)0.7823 (5)0.9409 (4)0.0648 (9)
H3A0.14790.82641.04530.097*
H3B0.04360.76430.91550.097*
H3C0.17800.87900.89030.097*
C20.4229 (6)0.2930 (5)0.8115 (5)0.0668 (9)
H2A0.43850.15910.80850.100*
H2B0.45010.36120.91190.100*
H2C0.52290.35720.75660.100*
C10.4822 (4)0.7395 (4)0.6847 (3)0.0388 (6)
C40.7664 (5)0.9297 (5)0.6001 (4)0.0560 (8)
H4A0.80540.96720.51050.084*
H4B0.86840.86050.64000.084*
H4C0.76471.04550.67000.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0299 (4)0.0452 (5)0.0342 (5)0.0002 (3)0.0036 (3)0.0054 (3)
O10.0403 (11)0.0678 (13)0.0464 (13)0.0103 (9)0.0021 (9)0.0123 (10)
O40.0469 (11)0.0594 (12)0.0423 (13)0.0087 (9)0.0053 (9)0.0069 (9)
O30.0582 (13)0.0456 (11)0.0650 (15)0.0035 (9)0.0062 (11)0.0084 (10)
O20.0387 (11)0.0747 (15)0.0468 (14)0.0092 (10)0.0027 (9)0.0066 (10)
O50.0385 (11)0.0550 (12)0.0500 (13)0.0104 (8)0.0027 (8)0.0138 (9)
N10.0351 (11)0.0490 (12)0.0355 (13)0.0065 (9)0.0007 (9)0.0100 (10)
C30.063 (2)0.0623 (19)0.064 (2)0.0168 (16)0.0072 (16)0.0071 (16)
C20.065 (2)0.0559 (18)0.081 (3)0.0213 (16)0.0028 (18)0.0142 (17)
C10.0321 (12)0.0388 (13)0.0426 (16)0.0031 (10)0.0034 (11)0.0054 (11)
C40.0374 (15)0.0576 (17)0.066 (2)0.0091 (12)0.0085 (13)0.0117 (15)
Geometric parameters (Å, º) top
P1—O11.451 (2)N1—C11.377 (3)
P1—O41.556 (2)N1—H1N0.8600
P1—O31.573 (2)C3—H3A0.9600
P1—N11.658 (2)C3—H3B0.9600
P1—O23.126 (2)C3—H3C0.9600
O4—C31.434 (4)C2—H2A0.9600
O4—O22.938 (3)C2—H2B0.9600
O3—C21.427 (4)C2—H2C0.9600
O2—C11.198 (3)C4—H4A0.9600
O5—C11.326 (3)C4—H4B0.9600
O5—C41.444 (3)C4—H4C0.9600
O1—P1—O4117.63 (12)O4—C3—H3B109.5
O1—P1—O3109.28 (13)H3A—C3—H3B109.5
O4—P1—O3101.56 (12)O4—C3—H3C109.5
O1—P1—N1109.55 (12)H3A—C3—H3C109.5
O4—P1—N1108.84 (12)H3B—C3—H3C109.5
O3—P1—N1109.57 (13)O3—C2—H2A109.5
O1—P1—O2149.38 (10)O3—C2—H2B109.5
O4—P1—O268.54 (9)H2A—C2—H2B109.5
O3—P1—O297.78 (10)O3—C2—H2C109.5
N1—P1—O245.52 (9)H2A—C2—H2C109.5
C3—O4—P1121.2 (2)H2B—C2—H2C109.5
C3—O4—O294.46 (19)O2—C1—O5125.1 (2)
P1—O4—O281.92 (10)O2—C1—N1125.7 (3)
C2—O3—P1123.2 (2)O5—C1—N1109.1 (2)
C1—O2—O487.22 (16)O5—C4—H4A109.5
C1—O2—P160.15 (15)O5—C4—H4B109.5
C1—O5—C4116.0 (2)H4A—C4—H4B109.5
C1—N1—P1128.4 (2)O5—C4—H4C109.5
C1—N1—H1N115.8H4A—C4—H4C109.5
P1—N1—H1N115.8H4B—C4—H4C109.5
O4—C3—H3A109.5
O1—P1—O4—C356.6 (3)N1—P1—O2—C13.4 (2)
O3—P1—O4—C3175.8 (2)O1—P1—O2—O4108.3 (2)
N1—P1—O4—C368.7 (2)O3—P1—O2—O499.42 (13)
O2—P1—O4—C390.3 (2)N1—P1—O2—O4150.72 (16)
O1—P1—O4—O2146.92 (12)O1—P1—N1—C1161.9 (2)
O3—P1—O4—O293.90 (11)O4—P1—N1—C132.0 (3)
N1—P1—O4—O221.63 (11)O3—P1—N1—C178.2 (3)
O1—P1—O3—C2177.8 (2)O2—P1—N1—C13.27 (19)
O4—P1—O3—C257.2 (3)O4—O2—C1—O5169.5 (3)
N1—P1—O3—C257.8 (3)P1—O2—C1—O5178.1 (3)
O2—P1—O3—C212.3 (3)O4—O2—C1—N18.8 (3)
C3—O4—O2—C198.7 (2)P1—O2—C1—N13.6 (2)
P1—O4—O2—C122.27 (18)C4—O5—C1—O21.1 (4)
C3—O4—O2—P1120.9 (2)C4—O5—C1—N1179.7 (2)
O1—P1—O2—C145.8 (3)P1—N1—C1—O27.5 (4)
O4—P1—O2—C1154.1 (2)P1—N1—C1—O5173.93 (19)
O3—P1—O2—C1106.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.861.992.847 (3)171
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC4H10NO5P
Mr183.10
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.441 (1), 7.018 (1), 9.298 (2)
α, β, γ (°)99.05 (3), 96.70 (3), 100.54 (3)
V3)403.46 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.30 × 0.30 × 0.25
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.910, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
1417, 1417, 1322
Rint0.000
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.133, 1.04
No. of reflections1417
No. of parameters101
No. of restraints0
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.37

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), WinGX (Farrugia, 2012).

Selected geometric parameters (Å, º) top
P1—O11.451 (2)P1—O23.126 (2)
P1—O41.556 (2)O4—O22.938 (3)
P1—O31.573 (2)O2—C11.198 (3)
P1—N11.658 (2)N1—C11.377 (3)
O1—P1—O4117.63 (12)O1—P1—N1109.55 (12)
O1—P1—O3109.28 (13)O4—P1—N1108.84 (12)
O4—P1—O3101.56 (12)O3—P1—N1109.57 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.861.992.847 (3)171
Symmetry code: (i) x, y+1, z+1.
references
References top

Amirkhanov, V. M., Ovchynnikov, V. A., Glowiak, T. & Kozlowski, H. (1997). Z. Naturforsch. Teil B, 52, 1331–1336.

Amirkhanov, V., Ovchynnikov, V., Legendziewicz, J., Graczyk, A., Hanuza, J. & Masalik, L. (1996). Acta Phys. Pol. A, 90, 455–460.

Bianchi, R., Gervasio, G. & Marabello, D. (2000). Inorg. Chem. 39, 2360–2366.

Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.

Kirsanov, A. V. & Marenetc, M. C. (1959). Russ. J. Gen. Chem. 29, 2256–2262.

Mizrahi, V. & Modro, T. A. (1982). Cryst. Struct. Commun. 11, 627–631.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Rebrova, O. H., Biyushkin, V. N., Malinovskiy, T. I., Procenko, L. D. & Dneprova, T. N. (1984). Dokl. Akad. Nauk SSSR, 274, 328–332.

Safin, D. A., Bolte, M., Shakirova, E. R. & Babashkina, M. G. (2009). Polyhedron, 28, 501–501.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sokolov, F. D., Brusko, V. V., Safin, D. A., Cherkasov, R. A. & Zabirov, N. G. (2008). Transition Metal Chemistry: New Research, edited by B. Varga & L. Kis, pp. 101–150. Hauppauge, NY: Nova Science Publishers Inc.

Tsibulskaya, N. P. & Orlacheva, K. A. (1956). DAN UkrSSR, pp. 602–606.

Zhurova, E. A., Tsirelson, V. G., Stash, A. I. & Pinkerton, A. A. (2002). J. Am. Chem. Soc. 124, 4574–4575.

Znovjyak, K. O., Moroz, O. V., Ovchynnikov, V. A., Sliva, T. Yu., Shishkina, S. V. & Amirkhanov, V. M. (2009). Polyhedron, 28, 3731–3738.