supplementary materials


gk2574 scheme

Acta Cryst. (2013). E69, o1138-o1139    [ doi:10.1107/S1600536813016905 ]

(E)-Methyl 3-(10-bromoanthracen-9-yl)acrylate

B. Bugenhagen, Y. Al Jasem, B. al Hindawi, N. Al Rawashdeh and T. Thiemann

Abstract top

In the title molecule, C18H13BrO2, the anthracene unit forms an angle of 46.91 (2)° with the mean plane of the methyl acrylate moiety. In the crystal, the molecules arrange themselves into strands parallel to [010] and, due to the crystal symmetry, there are eight strands crossing the unit cell. In each strand, molecules form short C-H...O and C-H...[pi] contacts and have their anthracene groups parallel to each other. Neighboring strands, related by a c-glide operation, are connected via C-H...O interactions and form a layer parallel to (100). The arrangement of the acrylate and anthracene groups in the crystal do not allow for [2 + 2] or [4 + 4] cycloaddition.

Comment top

In our interest in [2 + 2]-photocycloaddition of anthracene derivatives in the crystal (Sonoda, 2011; Schmidt, 1964), the authors grew single crystals of the title compound. The bromo atom (C2—Br1—C14 plane) deviates from the averaged plane of the anthracenyl unit (C1—C14) at an angle of 3.66 (2)°. This unusual deviation (Barkhuizen et al., 2004) may be due to the forced closeness of Br1 to the π system (C9—C14) of the underlying anthracenyl unit. Eight strands of molecules of the title compound cross the unit cell and propagate along [010] (Figure 3). The neighboring strands that are related by c-glide operation are connected via C5—H5···O2 interaction (Table 1) and form a layer parallel to (100). The close contacts C16—H16···O2 and C15—H15···Cg1 (π) (Table 1) link the neighboring molecules within each strand (Figure 2). The average plane of an anthracenyl unit of a molecule in one strand forms an angle of 78.37 (2)° with an anthracenyl unit of a molecule in the neighboring strand.While the anthracenyl units of the molecules in one strand are parallel to each other and exhibit an off-set that would be beneficial for π-π interaction, they are too far apart (distance between the averaged planes of the respective anthracenyl units: 3.362 (2) Å) to exhibit a strong π-π interaction, in contrast with the non-brominated parent compound (Bugenhagen et al., 2013).

The closest distance between double bonds of two molecules, which are molecules in one strand, is 5.321 (3) Å. Although this distance is smaller than the smallest distance found in the non-brominated parent compound (5.549 (3) Å) (Bugenhagen et al., 2013), it is larger than in many of those found for aryl-enes that undergo [2 + 2]-photodimerization readily (Vishnumurthy et al. 2002; Mascitti et al. 2006). The anthracenyl units themselves, while aligned parallel to each other in one strand, are off-set to each other and are much further apart (5.321 (3) Å for C1—C1 and C8—C8) than in anthracenes (less than 4.2 Å) that have been reported to undergo [4 + 4]-photodimerization in the crystal (Schmidt, 1971; Ihmels et al., 2000).

Related literature top

For an analogous preparation of the title compound, see: Bugenhagen et al. (2013); Nguyen & Weizman (2007). For crystal structures of photodimerizable aryl-enes, see: Vishnumurthy et al. (2002); Mascitti & Corey (2006); Sonoda (2011); Schmidt (1964). For the photodimerization of anthracenes in the crystal, see: Schmidt (1971); Ihmels et al. (2000). For the X-ray crystal structure of a non-planar bromoanthracene, see: Barkhuizen et al. (2004).

Experimental top

Methyl (E)-3-[10-bromoanthran-9-yl]-2-propenoate: to a solution of (E)-3-[10-bromoanthran-9-yl]-2-propenoic acid (875 mg, 2.68 mmol) in 1,2-dichloroethane (10 ml) was given an excess of thionyl chloride (1.0 g, 8.54 mmol), and the resulting mixture was kept at 70°C for 1.5 h. Thereafter, the ensuing solution was concentrated in vacuo. Thereafter, a solution of methanol (7 ml) in 1,2-dichloroethane (10 ml) was added, and the mixture was stirred at rt for 10 h. Then, it was concentrated in vacuo. The residue was taken up in dichloromethane (20 ml), extracted with water (2 X 10 ml), and dried over MgSO4. The solution was concentrated in vacuo, and the residue was subjected to column chromatography on silica gel (benzene-hexane 1:1) to give the title compound (847 mg, 93%) as a yellow solid; mp. 425 K; IR (KBr/cm-1) nmax 3066, 3021, 2950, 1711 (CO), 1631, 1436, 1338, 1315, 1254, 1203, 1180, 999, 900, 762, 749, 726; dH (400 MHz, CDCl3) 3.92 (3H, s, OCH3), 6.38 (1H, d, 3J = 16.0 Hz), 7.51 – 7.55 (2H, m), 7.59 – 7.63 (2H, m), 8.20 (2H, d, 3J = 8.8 Hz), 8.55 (1H, d, 3J = 16.0 Hz), 8.57 (2H, d, 3J = 7.6 Hz); dC (100.5 MHz, CDCl3) 52.0 (OCH3), 124.5 (Cquat), 125.7 (2 C, CH), 126.4 (2 C, CH), 127.2 (2 C, CH), 127.7 (CH), 128.4 (2 C, CH), 129.8 (2 C, Cquat), 130.1 (Cquat), 130.2 (2 C, Cquat), 142.0 (CH), 166.6 (Cquat, CO).

Refinement top

All carbon-bound hydrogen atoms were placed in calculated positions with C—H distances of 0.93 - 0.96 Å and refined as riding with Uiso(H) =xUeq(C), where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within OLEX2 (Dolomanov et al., 2009); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the title molecule with the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. The close contacts C—H···O and C—H···π between two molecules (colored in blue) in one strand, in addition to the C—H···O interaction between molecules of neighboring strands (related by c-glide operation). [Symmetry codes: (i) x,2 - y,-1/2 + z; (ii) x,1 + y,z; (iii) x,y,z; (iv) x,1 - y,1/2 + z]
[Figure 3] Fig. 3. The eight strands crossing the unit cell and propagating along the b axis with C—H···O interaction between neighboring strands shown as dashed lines.
Methyl 3-(10-bromoanthracen-9-yl)prop-2-enoate top
Crystal data top
C18H13BrO2Dx = 1.606 Mg m3
Mr = 341.19Melting point: 425 K
Orthorhombic, PbcnCu Kα radiation, λ = 1.5418 Å
a = 40.5848 (4) ÅCell parameters from 13502 reflections
b = 5.32093 (5) Åθ = 4.3–76.3°
c = 13.0710 (1) ŵ = 3.98 mm1
V = 2822.67 (5) Å3T = 100 K
Z = 8Block, light yellow
F(000) = 13760.21 × 0.19 × 0.13 mm
Data collection top
Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
diffractometer
2961 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2900 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.022
Detector resolution: 10.4127 pixels mm-1θmax = 76.3°, θmin = 4.4°
ω scansh = 5044
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2013)
k = 56
Tmin = 0.891, Tmax = 0.924l = 1516
25313 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0253P)2 + 4.4132P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.003
2961 reflectionsΔρmax = 0.31 e Å3
191 parametersΔρmin = 0.44 e Å3
0 restraints
Crystal data top
C18H13BrO2V = 2822.67 (5) Å3
Mr = 341.19Z = 8
Orthorhombic, PbcnCu Kα radiation
a = 40.5848 (4) ŵ = 3.98 mm1
b = 5.32093 (5) ÅT = 100 K
c = 13.0710 (1) Å0.21 × 0.19 × 0.13 mm
Data collection top
Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
diffractometer
2961 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2013)
2900 reflections with I > 2σ(I)
Tmin = 0.891, Tmax = 0.924Rint = 0.022
25313 measured reflectionsθmax = 76.3°
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.066Δρmax = 0.31 e Å3
S = 1.12Δρmin = 0.44 e Å3
2961 reflectionsAbsolute structure: ?
191 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.28462 (2)1.11853 (4)0.77185 (2)0.01637 (8)
C10.32116 (4)0.9076 (3)0.73973 (14)0.0125 (4)
C100.34022 (5)0.3729 (3)0.56492 (14)0.0143 (4)
C110.31165 (5)0.3554 (4)0.51014 (14)0.0159 (4)
C120.28558 (4)0.5263 (4)0.52784 (14)0.0157 (4)
C130.28813 (4)0.7045 (4)0.60248 (14)0.0141 (4)
C140.31732 (4)0.7266 (3)0.66306 (13)0.0121 (3)
C150.40212 (4)0.4163 (3)0.67191 (14)0.0132 (4)
C160.43266 (4)0.4937 (4)0.65111 (14)0.0145 (4)
C170.45923 (4)0.3109 (4)0.63028 (14)0.0147 (4)
C180.51645 (5)0.2672 (4)0.60385 (19)0.0263 (5)
C20.35047 (4)0.9392 (3)0.79499 (14)0.0122 (3)
C30.35474 (5)1.1300 (3)0.87078 (14)0.0144 (4)
C40.38315 (5)1.1478 (4)0.92569 (14)0.0165 (4)
C50.40887 (4)0.9717 (4)0.91069 (14)0.0160 (4)
C60.40616 (4)0.7915 (4)0.83732 (14)0.0148 (4)
C70.37738 (4)0.7705 (3)0.77405 (13)0.0119 (3)
C80.37435 (4)0.5854 (3)0.69716 (14)0.0120 (3)
C90.34444 (4)0.5594 (3)0.64271 (14)0.0120 (3)
H100.35730.26130.55140.017*
H110.30930.23040.46090.019*
H120.26660.51710.48830.019*
H130.27060.81330.61410.017*
H150.39800.24440.67040.016*
H160.43730.66480.64970.017*
H18A0.51460.19470.53680.039*
H18B0.51690.13570.65410.039*
H18C0.53640.36390.60810.039*
H30.33781.24400.88280.017*
H40.38571.27630.97330.020*
H50.42770.97930.95120.019*
H60.42340.67880.82790.018*
O10.48841 (3)0.4289 (3)0.62263 (12)0.0218 (3)
O20.45611 (3)0.0860 (3)0.62159 (11)0.0188 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01322 (11)0.01739 (12)0.01851 (12)0.00440 (7)0.00145 (7)0.00092 (7)
C10.0115 (8)0.0126 (8)0.0134 (8)0.0022 (7)0.0032 (7)0.0026 (7)
C100.0131 (8)0.0149 (9)0.0150 (8)0.0007 (7)0.0037 (7)0.0002 (7)
C110.0174 (9)0.0177 (9)0.0126 (8)0.0038 (7)0.0028 (7)0.0025 (7)
C120.0129 (8)0.0203 (10)0.0140 (9)0.0035 (7)0.0003 (7)0.0027 (8)
C130.0115 (8)0.0151 (9)0.0155 (9)0.0000 (7)0.0014 (7)0.0039 (8)
C140.0111 (8)0.0130 (8)0.0122 (8)0.0004 (7)0.0020 (6)0.0030 (7)
C150.0141 (8)0.0119 (8)0.0137 (8)0.0019 (7)0.0009 (7)0.0001 (7)
C160.0145 (8)0.0111 (8)0.0180 (9)0.0009 (7)0.0015 (7)0.0005 (7)
C170.0118 (8)0.0175 (9)0.0149 (8)0.0002 (7)0.0009 (7)0.0021 (7)
C180.0111 (9)0.0307 (12)0.0371 (12)0.0045 (8)0.0014 (8)0.0118 (10)
C20.0119 (8)0.0121 (8)0.0126 (8)0.0005 (7)0.0024 (7)0.0030 (7)
C30.0144 (8)0.0137 (9)0.0151 (9)0.0008 (7)0.0033 (7)0.0000 (7)
C40.0189 (9)0.0173 (9)0.0134 (8)0.0037 (7)0.0027 (7)0.0017 (7)
C50.0124 (8)0.0207 (10)0.0148 (8)0.0030 (7)0.0016 (7)0.0015 (8)
C60.0117 (8)0.0161 (9)0.0167 (9)0.0009 (7)0.0005 (7)0.0022 (7)
C70.0117 (8)0.0113 (8)0.0128 (8)0.0008 (7)0.0019 (6)0.0031 (7)
C80.0114 (8)0.0109 (8)0.0138 (8)0.0005 (7)0.0021 (7)0.0032 (7)
C90.0119 (8)0.0113 (8)0.0128 (8)0.0009 (7)0.0031 (6)0.0011 (7)
O10.0098 (6)0.0199 (7)0.0356 (8)0.0004 (5)0.0041 (6)0.0088 (6)
O20.0162 (6)0.0136 (7)0.0266 (7)0.0024 (5)0.0007 (6)0.0016 (6)
Geometric parameters (Å, º) top
C1—Br11.9068 (18)C18—H18C0.9600
C1—C141.398 (3)C18—H18B0.9600
C1—C21.402 (3)C18—H18A0.9600
C10—C111.366 (3)C2—C71.440 (2)
C10—H100.9300C2—C31.429 (3)
C11—C121.414 (3)C3—C41.361 (3)
C11—H110.9300C3—H30.9300
C12—C131.364 (3)C4—C51.416 (3)
C12—H120.9300C4—H40.9300
C13—C141.430 (2)C5—C61.361 (3)
C13—H130.9300C5—H50.9300
C15—C161.334 (3)C6—C71.435 (2)
C15—H150.9300C6—H60.9300
C16—C171.478 (3)C7—C81.413 (3)
C16—H160.9300C8—C151.479 (2)
C17—O21.208 (2)C8—C91.414 (2)
C17—O11.344 (2)C9—C141.440 (2)
C18—O11.448 (2)C9—C101.431 (3)
C2—C1—Br1118.41 (14)C11—C10—H10119.3
C14—C1—C2123.12 (17)C10—C11—H11119.8
C14—C1—Br1118.46 (14)C10—C11—C12120.37 (18)
C1—C2—C3123.06 (17)C12—C11—H11119.8
C1—C2—C7118.09 (17)C11—C12—H12119.8
C3—C2—C7118.85 (17)C13—C12—C11120.48 (17)
C2—C3—H3119.4C13—C12—H12119.8
C4—C3—C2121.20 (18)C12—C13—H13119.5
C4—C3—H3119.4C12—C13—C14121.07 (17)
C3—C4—H4119.8C14—C13—H13119.5
C3—C4—C5120.32 (18)C1—C14—C9118.22 (16)
C5—C4—H4119.8C1—C14—C13123.08 (17)
C4—C5—H5119.9C13—C14—C9118.68 (17)
C6—C5—C4120.29 (17)C8—C15—H15117.8
C6—C5—H5119.9C16—C15—C8124.45 (17)
C5—C6—H6119.1C16—C15—H15117.8
C5—C6—C7121.77 (17)C15—C16—H16119.6
C7—C6—H6119.1C15—C16—C17120.83 (18)
C6—C7—C2117.34 (16)C17—C16—H16119.6
C8—C7—C2120.27 (16)O1—C17—C16110.43 (17)
C8—C7—C6122.32 (17)O2—C17—C16126.35 (18)
C7—C8—C9120.06 (16)O2—C17—O1123.22 (18)
C7—C8—C15121.10 (16)H18A—C18—H18B109.5
C9—C8—C15118.84 (16)H18A—C18—H18C109.5
C8—C9—C10121.88 (17)H18B—C18—H18C109.5
C8—C9—C14120.18 (16)O1—C18—H18A109.5
C10—C9—C14117.93 (16)O1—C18—H18B109.5
C9—C10—H10119.3O1—C18—H18C109.5
C11—C10—C9121.42 (18)C17—O1—C18115.31 (16)
C1—C2—C3—C4177.29 (18)C8—C15—C16—C17177.77 (17)
C1—C2—C7—C6174.75 (17)C9—C8—C15—C16128.8 (2)
C1—C2—C7—C82.3 (3)C9—C10—C11—C121.3 (3)
C2—C1—C14—C92.3 (3)C10—C9—C14—C1179.34 (16)
C2—C1—C14—C13176.07 (17)C10—C9—C14—C132.2 (3)
C2—C3—C4—C51.8 (3)C10—C11—C12—C132.5 (3)
C2—C7—C8—C92.1 (3)C11—C12—C13—C141.3 (3)
C2—C7—C8—C15177.76 (16)C12—C13—C14—C1179.44 (18)
C3—C2—C7—C65.1 (2)C12—C13—C14—C91.1 (3)
C3—C2—C7—C8177.85 (16)C14—C1—C2—C3177.70 (17)
C3—C4—C5—C63.6 (3)C14—C1—C2—C72.4 (3)
C4—C5—C6—C70.9 (3)C14—C9—C10—C111.1 (3)
C5—C6—C7—C23.5 (3)C15—C8—C9—C100.7 (3)
C5—C6—C7—C8179.56 (18)C15—C8—C9—C14177.88 (16)
C6—C7—C8—C9174.75 (17)C15—C16—C17—O1173.18 (18)
C6—C7—C8—C155.4 (3)C15—C16—C17—O26.3 (3)
C7—C2—C3—C42.6 (3)C16—C17—O1—C18179.04 (17)
C7—C8—C9—C10179.43 (17)O2—C17—O1—C180.5 (3)
C7—C8—C9—C142.0 (3)Br1—C1—C2—C33.1 (2)
C7—C8—C15—C1651.1 (3)Br1—C1—C2—C7176.78 (13)
C8—C9—C10—C11177.55 (18)Br1—C1—C14—C9176.89 (13)
C8—C9—C14—C12.0 (3)Br1—C1—C14—C134.7 (2)
C8—C9—C14—C13176.41 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C15—H15···Cg1i0.932.91 (2)3.5055 (19)123
C16—H16···O2ii0.932.403.315 (3)170
C5—H5···O2iii0.932.533.372 (2)150
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H13BrO2
Mr341.19
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)100
a, b, c (Å)40.5848 (4), 5.32093 (5), 13.0710 (1)
V3)2822.67 (5)
Z8
Radiation typeCu Kα
µ (mm1)3.98
Crystal size (mm)0.21 × 0.19 × 0.13
Data collection
DiffractometerOxford Diffraction SuperNova, Dual, Cu at zero, Atlas
diffractometer
Absorption correctionAnalytical
(CrysAlis PRO; Agilent, 2013)
Tmin, Tmax0.891, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
25313, 2961, 2900
Rint0.022
(sin θ/λ)max1)0.630
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.066, 1.12
No. of reflections2961
No. of parameters191
No. of restraints0
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.44

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) within OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C15—H15···Cg1i0.932.91 (2)3.5055 (19)123
C16—H16···O2ii0.932.403.315 (3)170
C5—H5···O2iii0.932.533.372 (2)150
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x, y+1, z+1/2.
Acknowledgements top

The authors thank UAEU interdisciplinary grant 31S036 for financial support.

references
References top

Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Barkhuizen, D. A., Howie, R. A., Maguire, G. E. M. & Rademeyer, M. (2004). Acta Cryst. E60, o571–o573.

Bugenhagen, B., Al Jasem, Y., Hindawi, B. al, Al Rawashdeh, N. & Thiemann, T. (2013). Acta Cryst. E69, o130–o131.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Ihmels, H., Leusser, D., Pfeiffer, M. & Stalke, D. (2000). Tetrahedron, 56, 6867–6875.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Mascitti, V. & Corey, E. J. (2006). Tetrahedron Lett. 47, 5879–5882.

Nguyen, K. & Weizman, H. (2007). J. Chem. Educ. 84, 119–121.

Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 2014–2021.

Schmidt, G. M. J. (1971). J. Pure Appl. Chem. 27, 647–678.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sonoda, Y. (2011). Molecules, 16, 119–148.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Vishnumurthy, K., Guru Row, T. N. & Venkatesan, K. (2002). Photochem. Photobiol. Sci. 1, 427–430.