supplementary materials


gk2575 scheme

Acta Cryst. (2013). E69, o1056    [ doi:10.1107/S1600536813015511 ]

4-Bromomethyl-6-tert-butyl-2H-chromen-2-one

H. Nagarajaiah, K. B. Puttaraju, K. Shivashankar and N. S. Begum

Abstract top

In the crystal structure of the title compound, C14H15BrO2, weak C-H...O interactions link the molecules into zigzag chains extending along the c-axis direction. These chains are further assembled into (100) layers via [pi]-[pi] stacking interactions between inversion-related chromenone fragments [interplanar distance = 3.376 (2) Å].

Comment top

Coumarins are of great interest due to their biological properties (Lacy & O'Kennedy 2004). In particular, their physiological, bacteriostatic and anti-tumour activity (Mustafa et al., 2011) makes these compounds attractive for further backbone derivatization and screening for their therapeutic properties.

In the title compound, C15H14BrO2 (Fig. 1), the coumarin ring is substituted with bromomethyl group at C4 and tert-butyl group at C6. The coumarin ring is essentialy planar (r.m.s. deviation = 0.019 Å). Among the three methyl groups belonging to tert-butyl moiety two methyl groups, C12 & C13, deviate from the plane of the coumarin ring whereas the carbon atom C14 of the methyl group lies within the plane. The crystal structure is stabilized by C—H···O interactions (Moorthy et al. 2003). The C3—H3···O2 interaction results in zigzag chains running along the c-axis (Fig. 2). There are intermolecular ππ interactions between two anti-parallel molecules in the unit cell with an interplanar distance of 3.376 (2) Å. For crystal structures related to the title compound, see: Gowda et al. (2010); Fun et al. (2011).

Related literature top

For therapeutic properties of coumarin derivatives, see: Lacy & O'Kennedy (2004); Mustafa et al. (2011). For structural features of coumarins, see: Moorthy et al. (2003). For related structures, see: Gowda et al. (2010); Fun et al. (2011).

Experimental top

To a mixture of equimolar quantity of 4-tert-butyl phenol (0.1 mol) and 4-bromoethyl acetoacetate (0.1 mol) was added dropwise Conc. sulfuric acid (30 ml) with constant stirring and maintaining the temperature between 273–278 K. The reaction mixture was allowed to stand in ice chest overnight and deep red coloured solution was poured into the stream of crushed ice. Solid separated was filtered and washed with water and then with cold ethanol so as to get a colourless compound. Finally, it was recrystallized from ethyl acetate. Yield 89%; colorless solid; m.p. 417–420 K; IR (KBr, cm-1): 1700 (lactone C O), 1H NMR (300 MHz, DMSO-d6): δ 1.32 (s, 9H, 6-tert-butyl), 4.93 (s, 2H, CH2–Br), 6.70 (s, 1H, C3–H), 7.34 (d, 1H, C7–H, J = 6.2 Hz), 7.68 (d, 1H, C8–H, J = 8.1 Hz), 7.80 (s, 1H, C5–H): LC—MS 297 [M + 2]: Anal. Cald. for C15H14Br1O2: C 56.97; H 5.12. Found: C 56.91; H 5.04.

Refinement top

The H atoms were placed at calculated positions in the riding model approximation with C–H = 0.95, 0.98, and 0.99 Å for aryl, methyl, and methylene H-atoms respectively, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for other H atom.

Computing details top

Data collection: SMART (Bruker,1998); cell refinement: SAINT-Plus (Bruker,1998); data reduction: SAINT-Plus (Bruker,1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing 50% probability ellipsoids.
[Figure 2] Fig. 2. Chains of molecules formed by C-H···O interaction. Dotted lines indicate intermolecular interactions. H-atoms not involved in hydrogen bonding have been excluded.
4-Bromomethyl-6-tert-butyl-2H-chromen-2-one top
Crystal data top
C14H15BrO2F(000) = 600
Mr = 295.17Dx = 1.550 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2074 reflections
a = 10.3311 (19) Åθ = 2.3–27.0°
b = 16.830 (3) ŵ = 3.24 mm1
c = 7.3374 (14) ÅT = 100 K
β = 97.518 (3)°Block, colourless
V = 1264.8 (4) Å30.18 × 0.16 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2737 independent reflections
Radiation source: fine-focus sealed tube2074 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1312
Tmin = 0.593, Tmax = 0.625k = 2116
7522 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0531P)2]
where P = (Fo2 + 2Fc2)/3
2737 reflections(Δ/σ)max < 0.001
144 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C14H15BrO2V = 1264.8 (4) Å3
Mr = 295.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.3311 (19) ŵ = 3.24 mm1
b = 16.830 (3) ÅT = 100 K
c = 7.3374 (14) Å0.18 × 0.16 × 0.16 mm
β = 97.518 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2737 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2074 reflections with I > 2σ(I)
Tmin = 0.593, Tmax = 0.625Rint = 0.040
7522 measured reflectionsθmax = 27.0°
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.107Δρmax = 0.78 e Å3
S = 1.05Δρmin = 0.36 e Å3
2737 reflectionsAbsolute structure: ?
144 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4032 (3)0.13349 (18)0.2373 (4)0.0198 (7)
H1A0.40810.08490.16240.024*
H1B0.47680.16860.21640.024*
C20.5105 (3)0.13683 (17)0.7557 (4)0.0190 (6)
C30.4913 (3)0.15577 (18)0.5616 (4)0.0190 (6)
H30.53400.20110.52050.023*
C40.4148 (3)0.11146 (17)0.4361 (4)0.0173 (6)
C50.2620 (3)0.00601 (18)0.3828 (4)0.0171 (6)
H50.24670.00570.25510.021*
C60.1996 (3)0.07068 (17)0.4490 (4)0.0187 (6)
C70.2270 (3)0.08765 (18)0.6383 (4)0.0215 (7)
H70.18700.13240.68690.026*
C80.3104 (3)0.04076 (18)0.7543 (4)0.0215 (7)
H80.32760.05300.88160.026*
C90.3687 (3)0.02395 (17)0.6843 (4)0.0182 (6)
C100.3472 (3)0.04295 (17)0.4984 (4)0.0161 (6)
C110.1007 (3)0.12192 (18)0.3272 (4)0.0210 (7)
C120.0343 (3)0.11188 (14)0.3930 (5)0.0368 (9)
H12A0.09930.14290.31370.055*
H12B0.05900.05560.38710.055*
H12C0.03010.13070.52000.055*
C130.1402 (3)0.21004 (14)0.3427 (4)0.0265 (7)
H13A0.22510.21710.29870.040*
H13B0.07440.24210.26800.040*
H13C0.14650.22690.47160.040*
C140.0902 (2)0.09867 (5)0.12412 (5)0.0305 (8)
H14A0.17530.10560.08080.046*
H14B0.06320.04300.10960.046*
H14C0.02550.13260.05200.046*
O10.45022 (6)0.06915 (5)0.80902 (6)0.0197 (5)
O20.57521 (5)0.17418 (5)0.87563 (5)0.0241 (5)
Br10.23783 (3)0.18813 (2)0.16045 (4)0.03299 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0208 (16)0.0200 (16)0.0194 (15)0.0001 (12)0.0053 (12)0.0043 (12)
C20.0205 (16)0.0150 (15)0.0227 (16)0.0037 (12)0.0073 (13)0.0024 (12)
C30.0178 (16)0.0190 (16)0.0205 (15)0.0001 (12)0.0036 (12)0.0029 (12)
C40.0161 (15)0.0153 (15)0.0208 (15)0.0031 (12)0.0035 (12)0.0013 (12)
C50.0165 (15)0.0185 (16)0.0164 (14)0.0038 (12)0.0018 (12)0.0026 (11)
C60.0170 (15)0.0157 (15)0.0246 (16)0.0017 (12)0.0066 (12)0.0007 (12)
C70.0251 (17)0.0155 (15)0.0252 (16)0.0007 (13)0.0082 (13)0.0021 (12)
C80.0257 (17)0.0232 (17)0.0164 (15)0.0013 (13)0.0063 (13)0.0009 (12)
C90.0189 (16)0.0202 (16)0.0159 (14)0.0016 (12)0.0036 (12)0.0034 (12)
C100.0163 (15)0.0146 (14)0.0177 (14)0.0035 (11)0.0038 (11)0.0021 (11)
C110.0219 (16)0.0153 (15)0.0260 (17)0.0002 (12)0.0046 (13)0.0010 (13)
C120.0241 (19)0.030 (2)0.057 (2)0.0062 (15)0.0107 (17)0.0144 (18)
C130.034 (2)0.0228 (17)0.0230 (17)0.0016 (14)0.0032 (14)0.0003 (13)
C140.033 (2)0.0261 (19)0.0288 (18)0.0086 (15)0.0094 (15)0.0047 (14)
O10.0252 (12)0.0186 (11)0.0149 (10)0.0026 (9)0.0014 (9)0.0002 (8)
O20.0283 (13)0.0232 (12)0.0202 (11)0.0030 (9)0.0010 (9)0.0037 (9)
Br10.0305 (2)0.0332 (2)0.0326 (2)0.00355 (15)0.00600 (15)0.01003 (15)
Geometric parameters (Å, º) top
C1—C41.494 (4)C8—C91.376 (4)
C1—Br11.957 (3)C8—H80.9500
C1—H1A0.9900C9—O11.387 (3)
C1—H1B0.9900C9—C101.390 (4)
C2—O21.209 (3)C11—C141.531 (3)
C2—O11.379 (3)C11—C131.539 (4)
C2—C31.448 (4)C11—C121.544 (4)
C3—C41.356 (4)C12—H12A0.9800
C3—H30.9500C12—H12B0.9800
C4—C101.452 (4)C12—H12C0.9800
C5—C61.385 (4)C13—H13A0.9800
C5—C101.407 (4)C13—H13B0.9782
C5—H50.9500C13—H13C0.9819
C6—C71.410 (4)C14—H14A0.9800
C6—C111.532 (4)C14—H14B0.9800
C7—C81.378 (4)C14—H14C0.9800
C7—H70.9500
C4—C1—Br1110.7 (2)O1—C9—C10121.8 (3)
C4—C1—H1A109.5C9—C10—C5117.6 (3)
Br1—C1—H1A109.5C9—C10—C4118.0 (3)
C4—C1—H1B109.5C5—C10—C4124.3 (3)
Br1—C1—H1B109.5C14—C11—C6112.4 (2)
H1A—C1—H1B108.1C14—C11—C13107.6 (2)
O2—C2—O1116.8 (2)C6—C11—C13110.4 (2)
O2—C2—C3126.4 (3)C14—C11—C12109.0 (2)
O1—C2—C3116.9 (2)C6—C11—C12108.4 (2)
C4—C3—C2122.7 (3)C13—C11—C12108.9 (2)
C4—C3—H3118.7C11—C12—H12A109.5
C2—C3—H3118.7C11—C12—H12B109.5
C3—C4—C10119.0 (3)H12A—C12—H12B109.5
C3—C4—C1119.4 (3)C11—C12—H12C109.5
C10—C4—C1121.6 (3)H12A—C12—H12C109.5
C6—C5—C10122.1 (3)H12B—C12—H12C109.5
C6—C5—H5118.9C11—C13—H13A109.5
C10—C5—H5118.9C11—C13—H13B109.4
C5—C6—C7117.6 (3)H13A—C13—H13B109.5
C5—C6—C11122.9 (3)C11—C13—H13C109.5
C7—C6—C11119.6 (3)H13A—C13—H13C109.4
C8—C7—C6121.4 (3)H13B—C13—H13C109.5
C8—C7—H7119.3C11—C14—H14A109.5
C6—C7—H7119.3C11—C14—H14B109.5
C9—C8—C7119.4 (3)H14A—C14—H14B109.5
C9—C8—H8120.3C11—C14—H14C109.5
C7—C8—H8120.3H14A—C14—H14C109.5
C8—C9—O1116.4 (2)H14B—C14—H14C109.5
C8—C9—C10121.8 (3)C2—O1—C9121.59 (17)
O2—C2—C3—C4178.6 (3)C6—C5—C10—C90.6 (4)
O1—C2—C3—C42.0 (4)C6—C5—C10—C4179.9 (3)
C2—C3—C4—C101.1 (4)C3—C4—C10—C92.7 (4)
C2—C3—C4—C1178.1 (3)C1—C4—C10—C9176.5 (3)
Br1—C1—C4—C3102.3 (3)C3—C4—C10—C5177.8 (3)
Br1—C1—C4—C1078.5 (3)C1—C4—C10—C53.0 (4)
C10—C5—C6—C71.6 (4)C5—C6—C11—C145.8 (4)
C10—C5—C6—C11176.5 (3)C7—C6—C11—C14176.1 (3)
C5—C6—C7—C81.4 (4)C5—C6—C11—C13126.0 (3)
C11—C6—C7—C8176.8 (3)C7—C6—C11—C1355.9 (3)
C6—C7—C8—C90.2 (5)C5—C6—C11—C12114.7 (3)
C7—C8—C9—O1179.2 (2)C7—C6—C11—C1263.4 (3)
C7—C8—C9—C100.9 (5)O2—C2—O1—C9176.86 (19)
C8—C9—C10—C50.7 (4)C3—C2—O1—C93.7 (3)
O1—C9—C10—C5179.4 (2)C8—C9—O1—C2177.8 (2)
C8—C9—C10—C4178.9 (3)C10—C9—O1—C22.3 (4)
O1—C9—C10—C41.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.952.423.334 (4)162
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H15BrO2
Mr295.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.3311 (19), 16.830 (3), 7.3374 (14)
β (°) 97.518 (3)
V3)1264.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.24
Crystal size (mm)0.18 × 0.16 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.593, 0.625
No. of measured, independent and
observed [I > 2σ(I)] reflections
7522, 2737, 2074
Rint0.040
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 1.05
No. of reflections2737
No. of parameters144
No. of restraints0
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.36

Computer programs: SMART (Bruker,1998), SAINT-Plus (Bruker,1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and CAMERON (Watkin et al., 1996), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.9502.423.334 (4)162
Symmetry code: (i) x, y+1/2, z1/2.
Acknowledgements top

NSB and KSS are thankful to the University Grants Commission (UGC), India, for financial assistance. HN and PKB thank UGC for fellowships.

references
References top

Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconcin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Fun, H.-K., Goh, J. H., Wu, D. & Zhang, Y. (2011). Acta Cryst. E67, o136.

Gowda, R., Basanagouda, M., Kulkarni, M. V. & Gowda, K. V. A. (2010). Acta Cryst. E66, o2906.

Lacy, A. & O'Kennedy, R. (2004). Curr. Pharm. Des. 10, 3797–3811.

Moorthy, J. N., Venkatakrishnan, P. & Singh, A. S. (2003). CrystEngComm, 5, 507–513.

Mustafa, M. S., El-Abadelah, M. M., Zihlif, M. A., Naffa, R. G. & Mubarak, M. S. (2011). Molecules, 16, 4305–4317.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.