organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Methyl­phenyl­sulfon­yl)piperazin-1-ium tri­fluoro­acetate

aDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur, Karnataka 572 103, India, bTadimety Aromatics Pvt Ltd, Hirehally Industrial Area, Tumkur, Karnataka 572 168 , India, cDepartment of Studies in Chemistry, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, dDepartment of Studies and Research in Physics, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, and eSoild State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
*Correspondence e-mail: drsreenivasa@yahoo.co.in

(Received 30 May 2013; accepted 7 June 2013; online 19 June 2013)

In the title salt, C11H17N2O2S+·CF3COO, the cation is protonated at the secondary piperazine N atom. The dihedral angle between the benzene ring and the piperazine mean plane is 85.54 (10)°. In the crystal, cations and anions are connected by two types of strong N—H⋯O hydrogen bonds into chains extending along [101]. The chains are further assembled into (10-1) layers via stacking inter­actions between benzene rings of the cations [centroid–centroid distance = 3.7319 (13) Å] and a C—H⋯O inter­action involving a piperazine C—H group and a sulfonyl O atom. Another C—H⋯O inter­action between the piperazine ring and the sulfonyl group connects the ions into a three-dimensional network.

Related literature

For the synthesis, characterization and biological activity of piperazine derivatives, see: Gan et al. (2009a[Gan, L.-L., Cai, J.-L. & Zhou, C.-H. (2009a). Chin. Pharm. J. 44, 1361-1368.],b[Gan, L.-L., Lu, Y.-H. & Zhou, C.-H. (2009b). Chin. J. Biochem. Pharm, 30, 127-131.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H17N2O2S+·C2F3O2

  • Mr = 354.35

  • Monoclinic, P 21 /n

  • a = 7.8796 (6) Å

  • b = 22.5891 (15) Å

  • c = 9.4626 (7) Å

  • β = 110.446 (3)°

  • V = 1578.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 100 K

  • 0.24 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.941, Tmax = 0.950

  • 11562 measured reflections

  • 2781 independent reflections

  • 2417 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.094

  • S = 1.04

  • 2781 reflections

  • 217 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O4i 0.87 (3) 1.91 (3) 2.782 (2) 174 (2)
C8—H8B⋯O1ii 0.97 2.45 3.328 (2) 150
C9—H9B⋯O2iii 0.97 2.43 3.146 (2) 130
N2—H2N2⋯O3 0.86 (2) 1.86 (2) 2.690 (2) 163 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Numerous piperazine derivatives like aryl amide, sulfonamides, Mannich bases, Schiff bases, thiazolidinones, azetidinones, imidazolinones have shown a wide spectrum of biological activities viz. anti-inflammatory, antibacterial, antimalarial, anticonvulsant, antipyretic, antitumor, anthelmintics, analgesic, antidepressant, antifungal, antitubercular, anticancer, antidiabetic (Gan et al., 2009a,b). Keeping this in mind, we synthesized the title compound and here we report its crystal structure.

The title molecular salt, C11H17SO2N2+.CF3COO-, crystallizes in monoclinic crystal system and P21/n space group. The cation is protonated at the secondary N atom of the piperazine ring (Fig. 1). The piperazine ring adopts a chair conformation and the dihedral angle between the benzene ring and the piperazine ring (considering the mean plane formed by all the non-hydrogen atoms) in the cation is 85.54 (10)o. In the crystal, the ions are connected by strong N2—H1(N2)···O4 and N2—H2(N2)···O3 hydrogen bonds (Fig. 2, Table 1). The cations are further connected through weak C8—H8B···O1 and C9—H9B···O2 interactions forming chain C(6) and ring R22(8) motifs (Bernstein et al.1995) (Fig. 3, Table 1). The crystal structure is further stabilized by aromatic π-π stacking interactions.

Related literature top

For the synthesis, characterization and biological activity of piperazine derivatives, see: Gan et al. (2009a,b). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of tert-butyl 4-[(4-methylphenyl)sulfonyl]piperazine-1-carboxylate (0.002 moles, 1 gram) (1), trifluroacetic acid (TFA) (0.013 moles, 1 ml) in 1,2-dichloroethane (10 ml) was refluxed for 2 h. Reaction mixture was then cooled to room temperature and concentrated to get crude pale yellow colored solid 1-[(4-methylphenyl)sulfonyl]piperazine (2). The crude compound (2) was purified by column chromatography using petroleum ether:/ethyl acetate (7:3) as eluent to get white coloured solid (melting point = 518 K), which was further recrystallized from petroleum ether/ dichloromethane (1:1) to obtain colorless crystals suitable for diffraction studies.

Refinement top

The hydrogen atoms attached to N were located in difference maps. The distance H1N2-N2 was restrained to 0.86 (2) Å whereas H2N2 was freely refined. The remaining H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 - 0.97 Å. The isotropic displacement parameters for all H atoms were set to 1.2 times Ueq of the parent atom or 1.5 times that of the parent atom for CH3 group.

Structure description top

Numerous piperazine derivatives like aryl amide, sulfonamides, Mannich bases, Schiff bases, thiazolidinones, azetidinones, imidazolinones have shown a wide spectrum of biological activities viz. anti-inflammatory, antibacterial, antimalarial, anticonvulsant, antipyretic, antitumor, anthelmintics, analgesic, antidepressant, antifungal, antitubercular, anticancer, antidiabetic (Gan et al., 2009a,b). Keeping this in mind, we synthesized the title compound and here we report its crystal structure.

The title molecular salt, C11H17SO2N2+.CF3COO-, crystallizes in monoclinic crystal system and P21/n space group. The cation is protonated at the secondary N atom of the piperazine ring (Fig. 1). The piperazine ring adopts a chair conformation and the dihedral angle between the benzene ring and the piperazine ring (considering the mean plane formed by all the non-hydrogen atoms) in the cation is 85.54 (10)o. In the crystal, the ions are connected by strong N2—H1(N2)···O4 and N2—H2(N2)···O3 hydrogen bonds (Fig. 2, Table 1). The cations are further connected through weak C8—H8B···O1 and C9—H9B···O2 interactions forming chain C(6) and ring R22(8) motifs (Bernstein et al.1995) (Fig. 3, Table 1). The crystal structure is further stabilized by aromatic π-π stacking interactions.

For the synthesis, characterization and biological activity of piperazine derivatives, see: Gan et al. (2009a,b). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Chain of anions and cations connected via N—H···O hydrogen bonds. The hydrogen bonds are shown as dashed lines and the hydrogen atoms not involved in hydrogen bonds are omitted.
[Figure 3] Fig. 3. Molecular packing in the title compound displaying R22(10) rings and C(6) chains. Trifluoroacetate ion is omitted for clarity.
[Figure 4] Fig. 4. Aromatic π-π stacking interactions observed in the crystal structure.
4-(4-Methylphenylsulfonyl)piperazin-1-ium trifluoroacetate top
Crystal data top
C11H17N2O2S+·C2F3O2prism
Mr = 354.35Dx = 1.491 Mg m3
Monoclinic, P21/nMelting point: 518 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.8796 (6) ÅCell parameters from 2417 reflections
b = 22.5891 (15) Åθ = 1.8–25.0°
c = 9.4626 (7) ŵ = 0.26 mm1
β = 110.446 (3)°T = 100 K
V = 1578.2 (2) Å3Prism, colourless
Z = 40.24 × 0.22 × 0.20 mm
F(000) = 736
Data collection top
Bruker APEXII
diffractometer
2781 independent reflections
Radiation source: fine-focus sealed tube2417 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 1.03 pixels mm-1θmax = 25.0°, θmin = 1.8°
phi and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 2624
Tmin = 0.941, Tmax = 0.950l = 1110
11562 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.042P)2 + 1.4486P]
where P = (Fo2 + 2Fc2)/3
2781 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.86 e Å3
1 restraintΔρmin = 0.55 e Å3
0 constraints
Crystal data top
C11H17N2O2S+·C2F3O2V = 1578.2 (2) Å3
Mr = 354.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.8796 (6) ŵ = 0.26 mm1
b = 22.5891 (15) ÅT = 100 K
c = 9.4626 (7) Å0.24 × 0.22 × 0.20 mm
β = 110.446 (3)°
Data collection top
Bruker APEXII
diffractometer
2781 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2417 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.950Rint = 0.030
11562 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.86 e Å3
2781 reflectionsΔρmin = 0.55 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7630 (2)0.06870 (8)0.2940 (2)0.0153 (4)
C20.6839 (3)0.01633 (9)0.3194 (2)0.0183 (4)
H20.60860.00570.23880.022*
C30.7192 (3)0.00242 (9)0.4665 (2)0.0196 (4)
H30.66700.03730.48410.023*
C40.8315 (3)0.03019 (9)0.5883 (2)0.0192 (4)
C50.9097 (3)0.08191 (9)0.5598 (2)0.0214 (4)
H50.98560.10380.64040.026*
C60.8771 (3)0.10158 (9)0.4140 (2)0.0198 (4)
H60.93070.13620.39670.024*
C70.8684 (3)0.00917 (10)0.7478 (2)0.0259 (5)
H7A0.98780.02120.81050.039*
H7B0.86000.03320.74880.039*
H7C0.78090.02610.78550.039*
C80.3628 (2)0.09780 (8)0.0749 (2)0.0167 (4)
H8A0.38110.08600.17770.020*
H8B0.35280.06230.01490.020*
C90.1909 (3)0.13368 (9)0.0128 (2)0.0171 (4)
H9A0.16910.14380.09170.020*
H9B0.08890.11060.01680.020*
C100.3658 (3)0.22462 (9)0.1004 (2)0.0193 (4)
H10A0.37660.25980.16170.023*
H10B0.34620.23710.00220.023*
C110.5387 (3)0.18885 (8)0.1599 (2)0.0175 (4)
H11A0.63910.21180.15210.021*
H11B0.56460.17940.26540.021*
C120.0777 (3)0.32181 (9)0.1546 (2)0.0218 (5)
C130.1238 (2)0.30961 (9)0.0157 (2)0.0167 (4)
F10.0057 (3)0.37256 (7)0.19613 (16)0.0589 (5)
F20.0210 (2)0.27979 (6)0.24299 (14)0.0485 (4)
F30.2294 (2)0.32421 (8)0.18855 (15)0.0523 (4)
N10.5186 (2)0.13357 (7)0.07164 (17)0.0146 (3)
N20.2087 (2)0.18872 (7)0.10346 (19)0.0162 (4)
O10.66600 (18)0.04597 (6)0.00690 (15)0.0202 (3)
O20.84473 (18)0.13710 (6)0.10568 (15)0.0213 (3)
O30.05244 (19)0.26533 (6)0.04921 (15)0.0215 (3)
O40.22722 (19)0.34645 (6)0.10056 (15)0.0231 (3)
S10.70876 (6)0.09536 (2)0.10835 (5)0.01538 (15)
H1N20.222 (3)0.1792 (10)0.196 (3)0.029 (6)*
H2N20.114 (2)0.2104 (9)0.066 (2)0.021 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0127 (9)0.0189 (10)0.0163 (10)0.0046 (8)0.0074 (8)0.0021 (8)
C20.0177 (10)0.0179 (10)0.0197 (10)0.0016 (8)0.0071 (8)0.0026 (8)
C30.0210 (10)0.0178 (10)0.0232 (11)0.0021 (8)0.0120 (9)0.0019 (8)
C40.0158 (10)0.0249 (11)0.0191 (10)0.0050 (8)0.0091 (8)0.0016 (8)
C50.0190 (10)0.0263 (11)0.0181 (10)0.0031 (8)0.0053 (8)0.0028 (8)
C60.0162 (10)0.0218 (11)0.0222 (11)0.0026 (8)0.0078 (8)0.0001 (8)
C70.0269 (12)0.0338 (12)0.0201 (11)0.0035 (9)0.0120 (9)0.0036 (9)
C80.0149 (10)0.0162 (10)0.0207 (10)0.0021 (8)0.0084 (8)0.0026 (8)
C90.0158 (10)0.0212 (10)0.0152 (10)0.0002 (8)0.0066 (8)0.0025 (8)
C100.0229 (10)0.0162 (10)0.0213 (10)0.0017 (8)0.0108 (8)0.0016 (8)
C110.0182 (10)0.0150 (10)0.0210 (10)0.0004 (8)0.0089 (8)0.0023 (8)
C120.0272 (11)0.0196 (11)0.0181 (10)0.0076 (9)0.0071 (9)0.0025 (8)
C130.0141 (9)0.0194 (10)0.0169 (10)0.0003 (8)0.0058 (8)0.0015 (8)
F10.0970 (14)0.0423 (9)0.0240 (8)0.0291 (9)0.0041 (8)0.0078 (6)
F20.0775 (11)0.0456 (9)0.0158 (7)0.0377 (8)0.0080 (7)0.0068 (6)
F30.0497 (9)0.0871 (12)0.0294 (8)0.0198 (9)0.0253 (7)0.0013 (8)
N10.0143 (8)0.0145 (8)0.0172 (8)0.0000 (6)0.0080 (7)0.0012 (6)
N20.0178 (9)0.0181 (9)0.0142 (9)0.0062 (7)0.0075 (7)0.0028 (7)
O10.0220 (7)0.0234 (8)0.0177 (7)0.0056 (6)0.0099 (6)0.0016 (6)
O20.0165 (7)0.0269 (8)0.0244 (8)0.0003 (6)0.0119 (6)0.0045 (6)
O30.0274 (8)0.0201 (8)0.0177 (7)0.0089 (6)0.0087 (6)0.0027 (6)
O40.0254 (8)0.0254 (8)0.0168 (7)0.0122 (6)0.0054 (6)0.0030 (6)
S10.0137 (3)0.0193 (3)0.0159 (3)0.00225 (18)0.00858 (19)0.00105 (18)
Geometric parameters (Å, º) top
C1—C61.392 (3)C9—H9B0.9700
C1—C21.397 (3)C10—N21.488 (3)
C1—S11.7623 (19)C10—C111.514 (3)
C2—C31.387 (3)C10—H10A0.9700
C2—H20.9300C10—H10B0.9700
C3—C41.394 (3)C11—N11.480 (2)
C3—H30.9300C11—H11A0.9700
C4—C51.391 (3)C11—H11B0.9700
C4—C71.510 (3)C12—F11.312 (3)
C5—C61.385 (3)C12—F21.323 (2)
C5—H50.9300C12—F31.343 (3)
C6—H60.9300C12—C131.548 (3)
C7—H7A0.9600C13—O31.242 (2)
C7—H7B0.9600C13—O31.242 (2)
C7—H7C0.9600C13—O41.243 (2)
C8—N11.479 (2)N1—S11.6576 (16)
C8—C91.510 (3)N2—H1N20.87 (3)
C8—H8A0.9700N2—H2N20.860 (16)
C8—H8B0.9700O1—S11.4332 (14)
C9—N21.489 (2)O2—S11.4340 (14)
C9—H9A0.9700
C6—C1—C2120.75 (18)N2—C10—H10A109.6
C6—C1—S1119.58 (15)C11—C10—H10A109.6
C2—C1—S1119.60 (15)N2—C10—H10B109.6
C3—C2—C1119.12 (18)C11—C10—H10B109.6
C3—C2—H2120.4H10A—C10—H10B108.1
C1—C2—H2120.4N1—C11—C10109.58 (15)
C2—C3—C4121.03 (19)N1—C11—H11A109.8
C2—C3—H3119.5C10—C11—H11A109.8
C4—C3—H3119.5N1—C11—H11B109.8
C5—C4—C3118.68 (18)C10—C11—H11B109.8
C5—C4—C7120.96 (18)H11A—C11—H11B108.2
C3—C4—C7120.36 (19)F1—C12—F2108.37 (18)
C6—C5—C4121.48 (19)F1—C12—F3106.73 (18)
C6—C5—H5119.3F2—C12—F3104.68 (17)
C4—C5—H5119.3F1—C12—C13112.23 (17)
C5—C6—C1118.94 (18)F2—C12—C13113.76 (16)
C5—C6—H6120.5F3—C12—C13110.57 (16)
C1—C6—H6120.5O3—C13—O4128.86 (18)
C4—C7—H7A109.5O3—C13—O4128.86 (18)
C4—C7—H7B109.5O3—C13—C12116.54 (16)
H7A—C7—H7B109.5O3—C13—C12116.54 (16)
C4—C7—H7C109.5O4—C13—C12114.60 (17)
H7A—C7—H7C109.5C8—N1—C11112.06 (14)
H7B—C7—H7C109.5C8—N1—S1114.04 (12)
N1—C8—C9109.67 (15)C11—N1—S1114.21 (12)
N1—C8—H8A109.7C10—N2—C9110.79 (15)
C9—C8—H8A109.7C10—N2—H1N2110.0 (15)
N1—C8—H8B109.7C9—N2—H1N2109.2 (16)
C9—C8—H8B109.7C10—N2—H2N2106.9 (15)
H8A—C8—H8B108.2C9—N2—H2N2110.2 (15)
N2—C9—C8109.43 (15)H1N2—N2—H2N2110 (2)
N2—C9—H9A109.8O1—S1—O2120.15 (8)
C8—C9—H9A109.8O1—S1—N1106.33 (8)
N2—C9—H9B109.8O2—S1—N1106.28 (8)
C8—C9—H9B109.8O1—S1—C1108.66 (9)
H9A—C9—H9B108.2O2—S1—C1108.65 (9)
N2—C10—C11110.41 (16)N1—S1—C1105.87 (8)
C6—C1—C2—C30.6 (3)C9—C8—N1—C1158.60 (19)
S1—C1—C2—C3176.24 (14)C9—C8—N1—S1169.70 (12)
C1—C2—C3—C40.1 (3)C10—C11—N1—C857.2 (2)
C2—C3—C4—C50.6 (3)C10—C11—N1—S1171.14 (12)
C2—C3—C4—C7179.94 (18)C11—C10—N2—C958.0 (2)
C3—C4—C5—C60.5 (3)C8—C9—N2—C1058.8 (2)
C7—C4—C5—C6179.90 (18)O4—C13—O3—O30.00 (8)
C4—C5—C6—C10.2 (3)C12—C13—O3—O30.00 (7)
C2—C1—C6—C50.7 (3)C8—N1—S1—O152.91 (14)
S1—C1—C6—C5176.09 (15)C11—N1—S1—O1176.43 (13)
N1—C8—C9—N258.22 (19)C8—N1—S1—O2177.97 (13)
N2—C10—C11—N156.2 (2)C11—N1—S1—O247.32 (14)
F1—C12—C13—O3117.9 (2)C8—N1—S1—C162.54 (14)
F2—C12—C13—O35.6 (3)C11—N1—S1—C168.11 (14)
F3—C12—C13—O3123.07 (19)C6—C1—S1—O1153.58 (15)
F1—C12—C13—O3117.9 (2)C2—C1—S1—O129.56 (17)
F2—C12—C13—O35.6 (3)C6—C1—S1—O221.24 (18)
F3—C12—C13—O3123.07 (19)C2—C1—S1—O2161.90 (14)
F1—C12—C13—O461.4 (2)C6—C1—S1—N192.56 (16)
F2—C12—C13—O4175.05 (18)C2—C1—S1—N184.30 (16)
F3—C12—C13—O457.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O4i0.87 (3)1.91 (3)2.782 (2)174 (2)
C8—H8B···O1ii0.972.453.328 (2)150
C9—H9B···O2iii0.972.433.146 (2)130
N2—H2N2···O30.86 (2)1.86 (2)2.690 (2)163 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC11H17N2O2S+·C2F3O2
Mr354.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)7.8796 (6), 22.5891 (15), 9.4626 (7)
β (°) 110.446 (3)
V3)1578.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.24 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.941, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
11562, 2781, 2417
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.094, 1.04
No. of reflections2781
No. of parameters217
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.86, 0.55

Computer programs: APEX2 (Bruker, 2009), APEX2 and SAINT-Plus (Bruker, 2009), SAINT-Plus and XPREP (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O4i0.87 (3)1.91 (3)2.782 (2)174 (2)
C8—H8B···O1ii0.972.453.328 (2)149.7
C9—H9B···O2iii0.972.433.146 (2)130.4
N2—H2N2···O30.860 (16)1.857 (17)2.690 (2)163 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x1, y, z.
 

Acknowledgements

The authors thank Dr S. C. Sharma, Former Vice Chancellor, Tumkur University, Tumkur for his constant encouragement and Professor T. N. Guru Row, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for his help and valuable suggestions. BSPM thanks Dr H. C. Devaraje Gowda, Department of Physics Yuvarajas College (constituent), University of Mysore, for his guidance.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGan, L.-L., Cai, J.-L. & Zhou, C.-H. (2009a). Chin. Pharm. J. 44, 1361–1368.  CAS Google Scholar
First citationGan, L.-L., Lu, Y.-H. & Zhou, C.-H. (2009b). Chin. J. Biochem. Pharm, 30, 127–131.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds