organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-{4-[(1,3-Benzodioxol-5-yl)methyl]piperazin-1-yl}pyrimidine

Chunli Wu,* Jieming Li, Huijie Wei, Ye Hang and **Yueming Jiang**

School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China Correspondence e-mail: wcllaoshi@yahoo.com.cn

Received 17 June 2013; accepted 18 June 2013

Key indicators: single-crystal X-ray study: T = 291 K: mean σ (C–C) = 0.002 Å: R factor = 0.039; wR factor = 0.112; data-to-parameter ratio = 13.2.

In the title compound, C₁₆H₁₈N₄O₂, known also as peribedil, the dihedral angle between the mean planes of the pyrimidine and benzene rings is $56.5 (8)^{\circ}$. The 1,3-dioxole fragment adopts an envelope conformation with the methylene C atom forming the flap; this atom deviates by 0.232 (3) Å from the plane defined by the remaining atoms of the 1,3-benzodioxole unit. In the crystal, $C-H \cdot \cdot \pi$ interactions between *c*-gliderelated molecules arrange them into columns extending along the *c*-axis direction. The columns related by a unit translation along the b axis are packed into (100) layers via another C-H. $\cdot \cdot \pi$ interaction involving the pyrimidine ring as an acceptor.

Related literature

For details of the synthesis of piribedil, see: Duncton et al. (2006); Conroy & Denton (1953); Hamid et al. (2007). For the pharmacological activity of the title compound, see: Rondot et al. (1992).

Experimental

Crystal data

C16H18N4O2 $M_r = 298.34$ Orthorhombic, Pccn a = 21.3085 (6) Å b = 18.6249 (4) Å c = 7.48851 (19) Å

Data collection

Agilent Xcalibur (Eos, Gemini) diffractometer Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012)' $T_{\min} = 0.910, T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	200 parameters
$wR(F^2) = 0.112$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^{-3}$
2635 reflections	$\Delta \rho_{\rm min} = -0.14 \text{ e} \text{ Å}^{-3}$

 $V = 2971.95 (12) \text{ Å}^3$

 $0.25 \times 0.2 \times 0.2$ mm

6334 measured reflections

2635 independent reflections

2186 reflections with $I > 2\sigma(I)$

Cu Ka radiation

 $\mu = 0.74 \text{ mm}^-$

T = 291 K

 $R_{\rm int} = 0.019$

Z = 8

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the pyrimidine ring and Cg2 is the centroid of the benzene ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
:				
$C2-H2\cdots Cg1^{1}$	0.93	2.83	3.6771 (17)	152
$C9 - H9B \cdots Cg1^{ii}$	0.97	2.92	3.8090 (18)	152
$C16 - H16A \cdots Cg2^{iii}$	0.97	2.80	3.689 (2)	153
Symmetry codes: (i) $x, -$	$y - \frac{1}{2}, z - \frac{1}{2};$ (i	i) $x, y, z - 1;$ (iii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.	

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material

We thank Hongmin Liu (Zhengzhou University) for the analysis of the single-crystal data.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2582).

References

for publication: OLEX2.

Agilent (2012). CrvsAlis PRO. Agilent Technologies, Yarnton, England.

Conroy, E. A. & Denton, J. J. (1953). J. Org. Chem. 18, 1489-1491.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Duncton, M. A. J., Roffey, J. R. A., Hamlyn, R. J. & Adams, D. R. (2006). Tetrahedron Lett. 47, 2549-2552.

Hamid, M. H. A. & Williams, J. M. J. (2007). Tetrahedron Lett., 48, 8263-8265. Rondot, P. & Ziegler, M. (1992). J. Neurol. pp. S28-S34.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, o1140 [https://doi.org/10.1107/S1600536813016851] 2-{4-[(1,3-Benzodioxol-5-yl)methyl]piperazin-1-yl}pyrimidine Chunli Wu, Jieming Li, Huijie Wei, Ye Hang and Yueming Jiang

S1. Comment

Experimental investigation shows that the dopamine agonist, piribedil, is active in the treatment of Parkinson's disease, particularly with regard to tremor (Rondot *et al.*, 1992). We report herein the synthesis (Hamid *et al.*, 2007) and the crystal structure of the title compound. The benzene and pyrimidine rings subtend a dihedral angle of 56.5 (8)°. The benzo[1,3]dioxole fragments, the dihedral angle between O1—C16—O2 plane and the remaining 8 atoms of the bicyclic fragment (O1—C14—C13—C12—C11—C10—C15—O2) is 16.1 (1)°. Piperazine fragments, the dihedral angle between C5—C8 plane and C5—N3—C7 plane is 29.7 (3) °, C5—C8 plane and C6—N4—C8 plane is 23.9 (7) °. In the crystal, the molecules associate through C—H… π interactions (see table 1).

S2. Experimental

The triethylamine catalyzed reaction of 5-chlorobenzo[*d*][1,3]dioxole (8.5 mmol) and 2-(piperazin-1-yl)pyrimidine (8.1 mmol) was carried out in isopropyl alcohol (10 mL). The reaction mixture was refluxed for 2 h to afford the title compound. Colorless blocks of the title compound were obtained by recrystallization from ethanol. Crystals suitable for X-ray analysis were grown from methyl alcohol-ethyl acetate solution at room temperature by slow evaporation over two weeks.

S3. Refinement

H atoms were placed in calculated positions and allowed to ride on their carriers with C—H distances 0.93–0.97 Å and $U_{iso}(H)=1.2U_{eq}(C)$.

Figure 1

The molecular structure of the compound, with 30% probability displacement ellipsoids for non-hydrogen atoms.

Figure 2

A view of the column along the c axis formed via C—H $\cdots \pi$ stacking interactions (symmetry code: A *x*, 1.5 - *y*, *z* - 0.5; B *x*, 1.5 - *y*, *z* + 0.5; D *x*, *y*, 1 + *z*.).

2-{4-[(1,3-Benzodioxol-5-yl)methyl]piperazin-1-yl}pyrimidine

Crystal data

$C_{16}H_{18}N_4O_2$	$D_{\rm x} = 1.334 {\rm ~Mg} {\rm ~m}^{-3}$
$M_r = 298.34$	Melting point = $370-372$ K
Orthorhombic, Pccn	Cu K α radiation, $\lambda = 1.5418$ Å
a = 21.3085 (6) Å	Cell parameters from 2402 reflections
b = 18.6249 (4) Å	$\theta = 3.2 - 67.0^{\circ}$
c = 7.48851 (19) Å	$\mu = 0.74 \text{ mm}^{-1}$
V = 2971.95(12) Å ³	T = 291 K
Z = 8	Block, colorless
F(000) = 1264	$0.25 \times 0.2 \times 0.2 \text{ mm}$
Data collection	
Agilent Xcalibur (Eos, Gemini)	6334 measured reflections
diffractometer	2635 independent reflections
Radiation source: Enhance (Cu) X-ray Source	2186 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.019$
Detector resolution: 16.2312 pixels mm ⁻¹	$\theta_{\text{max}}^{\text{min}} = 67.1^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$
ω scans	$h = -25 \rightarrow 24$
Absorption correction: multi-scan	$k = -22 \rightarrow 19$
(CrysAlis PRO; Agilent, 2012)'	$l = -7 \rightarrow 8$
$T_{\min} = 0.910, \ T_{\max} = 1.000$	

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H-atom parameters constrained
$wR(F^2) = 0.112$	$w = 1/[\sigma^2(F_o^2) + (0.0574P)^2 + 0.4246P]$
S = 1.03	where $P = (F_o^2 + 2F_c^2)/3$
2635 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
200 parameters	$\Delta \rho_{\rm max} = 0.13 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	Extinction correction: SHELXL,
direct methods	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.00143 (18)
map	

Special details

Experimental. ¹H NMR (400 MHz, CDCl₃, p.p.m.): 8.30 (d, J = 4.7 Hz, 1H), 6.90 (s, 1H), 6.76 (s, 1H), 6.47 (s, J = 4.7 Hz, 1H), 6.20 (dt, J = 10.6, 2.2 Hz, 1H), 5.95 (s, 1H), 3.89–3.66 (m, 2H), 3.46 (s, 1H), 2.58–2.27 (m, 2H); ¹³C NMR (101 MHz, CDCl₃, p.p.m.): 161.67, 157.70, 147.68, 146.66, 131.91, 122.23, 109.72, 109.50, 107.90, 100.91, 62.89, 52.85, 43.69; ESI–HRMS m/z: 299.1506 (calculated for C₁₆H₁₉N₄O₂ [M + 1]⁺: 299.1508).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.65086 (6)	0.79907 (7)	0.4624 (2)	0.0734 (4)	
O2	0.55046 (6)	0.77275 (6)	0.55466 (19)	0.0663 (4)	
N1	0.59429 (6)	0.33262 (7)	1.31759 (19)	0.0498 (3)	
N2	0.69678 (6)	0.38529(7)	1.31927 (17)	0.0476 (3)	
N3	0.62385 (6)	0.41598 (6)	1.10454 (18)	0.0457 (3)	
N4	0.59232 (6)	0.49704 (6)	0.79397 (17)	0.0440 (3)	
C1	0.61119 (9)	0.29307 (9)	1.4583 (2)	0.0557 (4)	
H1	0.5819	0.2616	1.5070	0.067*	
C2	0.66955 (9)	0.29663 (9)	1.5342 (2)	0.0575 (4)	
H2	0.6805	0.2685	1.6318	0.069*	
C3	0.71099 (9)	0.34407 (9)	1.4582 (2)	0.0545 (4)	
H3	0.7511	0.3475	1.5066	0.065*	
C4	0.63848 (7)	0.37709 (7)	1.2534 (2)	0.0404 (3)	
C5	0.65864 (8)	0.48112 (8)	1.0596 (2)	0.0508 (4)	
H5A	0.7019	0.4762	1.0982	0.061*	
H5B	0.6404	0.5218	1.1219	0.061*	
C6	0.65682 (7)	0.49460 (8)	0.8609 (2)	0.0489 (4)	
H6A	0.6775	0.5398	0.8348	0.059*	
H6B	0.6796	0.4568	0.7998	0.059*	
C7	0.56029 (8)	0.41465 (9)	1.0326 (2)	0.0503 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

H7A	0.5350	0.4509	1.0914	0.060*	
H7B	0.5414	0.3682	1.0552	0.060*	
C8	0.56174 (8)	0.42877 (8)	0.8347 (2)	0.0512 (4)	
H8A	0.5841	0.3902	0.7755	0.061*	
H8B	0.5192	0.4295	0.7890	0.061*	
C9	0.59173 (9)	0.51044 (9)	0.6002 (2)	0.0545 (4)	
H9A	0.5501	0.5006	0.5541	0.065*	
H9B	0.6208	0.4777	0.5426	0.065*	
C10	0.56549 (8)	0.64162 (9)	0.5773 (2)	0.0495 (4)	
H10	0.5247	0.6319	0.6144	0.059*	
C11	0.60958 (8)	0.58649 (9)	0.5536 (2)	0.0491 (4)	
C12	0.66915 (9)	0.60274 (11)	0.4929 (3)	0.0619 (5)	
H12	0.6975	0.5655	0.4746	0.074*	
C13	0.68819 (9)	0.67322 (11)	0.4582 (3)	0.0691 (5)	
H13	0.7284	0.6837	0.4175	0.083*	
C14	0.64478 (8)	0.72593 (10)	0.4871 (2)	0.0567 (4)	
C15	0.58497 (8)	0.71057 (9)	0.5435 (2)	0.0494 (4)	
C16	0.59495 (9)	0.82922 (10)	0.5360 (3)	0.0644 (5)	
H16A	0.6037	0.8507	0.6513	0.077*	
H16B	0.5786	0.8662	0.4574	0.077*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
01	0.0539 (8)	0.0690 (8)	0.0972 (11)	-0.0100 (7)	-0.0008 (7)	0.0219 (8)
O2	0.0523 (7)	0.0565 (7)	0.0901 (9)	0.0039 (6)	0.0045 (7)	0.0059 (6)
N1	0.0442 (7)	0.0486 (7)	0.0564 (8)	-0.0013 (6)	0.0050 (6)	0.0033 (6)
N2	0.0433 (7)	0.0517 (7)	0.0477 (7)	-0.0018 (6)	-0.0037 (6)	0.0038 (6)
N3	0.0380 (7)	0.0450 (6)	0.0542 (7)	-0.0030 (5)	-0.0059 (6)	0.0058 (6)
N4	0.0415 (7)	0.0422 (6)	0.0484 (7)	0.0022 (5)	-0.0063 (5)	-0.0005 (5)
C1	0.0596 (11)	0.0488 (8)	0.0588 (10)	-0.0012 (8)	0.0133 (8)	0.0074 (8)
C2	0.0655 (11)	0.0567 (9)	0.0502 (9)	0.0051 (9)	0.0014 (8)	0.0102 (8)
C3	0.0535 (10)	0.0591 (9)	0.0510 (9)	0.0018 (8)	-0.0078 (8)	0.0040 (8)
C4	0.0403 (7)	0.0372 (7)	0.0439 (8)	0.0042 (6)	0.0034 (6)	-0.0050 (6)
C5	0.0496 (9)	0.0459 (8)	0.0569 (9)	-0.0080 (7)	-0.0131 (7)	0.0060 (7)
C6	0.0406 (8)	0.0501 (8)	0.0560 (9)	-0.0019 (7)	-0.0057 (7)	0.0064 (7)
C7	0.0366 (8)	0.0486 (8)	0.0656 (10)	-0.0008 (7)	-0.0031 (7)	0.0062 (8)
C8	0.0418 (8)	0.0476 (8)	0.0642 (10)	-0.0012 (7)	-0.0128 (7)	-0.0025 (8)
C9	0.0568 (10)	0.0563 (9)	0.0505 (9)	0.0028 (8)	-0.0106 (8)	-0.0043 (8)
C10	0.0375 (8)	0.0616 (9)	0.0495 (9)	-0.0008 (7)	-0.0004 (7)	0.0046 (7)
C11	0.0461 (9)	0.0599 (9)	0.0412 (8)	0.0034 (7)	-0.0069 (6)	0.0020 (7)
C12	0.0467 (10)	0.0742 (11)	0.0649 (11)	0.0142 (9)	0.0008 (8)	0.0053 (9)
C13	0.0371 (9)	0.0875 (13)	0.0827 (13)	0.0006 (9)	0.0073 (9)	0.0176 (11)
C14	0.0433 (9)	0.0685 (10)	0.0582 (9)	-0.0046 (8)	-0.0038 (7)	0.0129 (8)
C15	0.0411 (8)	0.0580 (9)	0.0490 (8)	0.0055 (7)	-0.0030 (7)	0.0055 (7)
C16	0.0618 (12)	0.0592 (10)	0.0723 (12)	-0.0022 (9)	-0.0057 (9)	0.0125 (9)

Geometric parameters (Å, °)

01—C14	1.381 (2)	С6—Н6А	0.9700
O1—C16	1.428 (2)	C6—H6B	0.9700
O2—C15	1.374 (2)	С7—Н7А	0.9700
O2—C16	1.423 (2)	С7—Н7В	0.9700
N1—C1	1.335 (2)	С7—С8	1.505 (2)
N1—C4	1.343 (2)	C8—H8A	0.9700
N2—C3	1.328 (2)	C8—H8B	0.9700
N2—C4	1.345 (2)	С9—Н9А	0.9700
N3—C4	1.365 (2)	С9—Н9В	0.9700
N3—C5	1.4611 (19)	C9—C11	1.508 (2)
N3—C7	1.458 (2)	C10—H10	0.9300
N4—C6	1.4636 (19)	C10—C11	1.403 (2)
N4—C8	1.4610 (19)	C10—C15	1.373 (2)
N4—C9	1.472 (2)	C11—C12	1.382 (3)
C1—H1	0.9300	C12—H12	0.9300
C1—C2	1.369 (3)	C12—C13	1.398 (3)
С2—Н2	0.9300	C13—H13	0.9300
С2—С3	1.373 (3)	C13—C14	1.366 (3)
С3—Н3	0.9300	C14—C15	1.373 (2)
С5—Н5А	0.9700	C16—H16A	0.9700
С5—Н5В	0.9700	C16—H16B	0.9700
C5—C6	1.510 (2)		
C14—O1—C16	104.96 (14)	С8—С7—Н7А	109.7
C15—O2—C16	105.09 (14)	C8—C7—H7B	109.7
C1—N1—C4	115.70 (15)	N4C8C7	111.53 (13)
C3—N2—C4	115.61 (14)	N4—C8—H8A	109.3
C4—N3—C5	120.85 (13)	N4—C8—H8B	109.3
C4—N3—C7	120.32 (13)	C7—C8—H8A	109.3
C7—N3—C5	113.60 (12)	C7—C8—H8B	109.3
C6—N4—C9	110.51 (13)	H8A—C8—H8B	108.0
C8—N4—C6	108.67 (11)	N4—C9—H9A	109.1
C8—N4—C9	110.47 (13)	N4—C9—H9B	109.1
N1-C1-H1	118.5	N4—C9—C11	112.68 (13)
N1—C1—C2	123.09 (16)	H9A—C9—H9B	107.8
C2	118.5	С11—С9—Н9А	109.1
C1—C2—H2	121.8	С11—С9—Н9В	109.1
C1—C2—C3	116.33 (16)	C11-C10-H10	121.3
С3—С2—Н2	121.8	C15-C10-H10	121.3
N2—C3—C2	123.37 (17)	C15-C10-C11	117.31 (15)
N2—C3—H3	118.3	C10—C11—C9	119.30 (15)
С2—С3—Н3	118.3	C12—C11—C9	120.90 (16)
N1-C4-N2	125.88 (14)	C12—C11—C10	119.77 (16)
N1-C4-N3	117.34 (14)	C11—C12—H12	118.9
N2-C4-N3	116.75 (13)	C11—C12—C13	122.22 (17)
N3—C5—H5A	109.5	C13—C12—H12	118.9

N3—C5—H5B	109.5	С12—С13—Н13	121.7
N3—C5—C6	110.62 (13)	C14—C13—C12	116.67 (17)
H5A—C5—H5B	108.1	C14—C13—H13	121.7
С6—С5—Н5А	109.5	C13—C14—O1	128.63 (17)
С6—С5—Н5В	109.5	C13—C14—C15	121.84 (17)
N4—C6—C5	111.51 (13)	C15—C14—O1	109.50 (16)
N4—C6—H6A	109.3	C10—C15—O2	127.97 (15)
N4—C6—H6B	109.3	C14—C15—O2	109.87 (15)
С5—С6—Н6А	109.3	C14—C15—C10	122.15 (16)
С5—С6—Н6В	109.3	O1—C16—H16A	110.2
H6A—C6—H6B	108.0	O1—C16—H16B	110.2
N3—C7—H7A	109.7	O2—C16—O1	107.65 (15)
N3—C7—H7B	109.7	O2—C16—H16A	110.2
N3—C7—C8	109.99 (14)	O2—C16—H16B	110.2
H7A—C7—H7B	108.2	H16A—C16—H16B	108.5
O1—C14—C15—O2	0.8 (2)	C7—N3—C5—C6	-52.15 (18)
O1-C14-C15-C10	179.46 (16)	C8—N4—C6—C5	-58.80 (17)
N1—C1—C2—C3	0.3 (3)	C8—N4—C9—C11	167.44 (13)
N3-C5-C6-N4	54.89 (18)	C9—N4—C6—C5	179.83 (13)
N3—C7—C8—N4	-56.91 (17)	C9—N4—C8—C7	-178.59 (14)
N4—C9—C11—C10	-76.79 (19)	C9—C11—C12—C13	-176.31 (18)
N4—C9—C11—C12	101.32 (19)	C10-C11-C12-C13	1.8 (3)
C1—N1—C4—N2	-0.8 (2)	C11—C10—C15—O2	178.97 (16)
C1—N1—C4—N3	177.08 (13)	C11—C10—C15—C14	0.6 (3)
C1—C2—C3—N2	0.3 (3)	C11—C12—C13—C14	0.0 (3)
C3—N2—C4—N1	1.3 (2)	C12-C13-C14-O1	-179.37 (19)
C3—N2—C4—N3	-176.54 (14)	C12—C13—C14—C15	-1.4 (3)
C4—N1—C1—C2	-0.1 (2)	C13—C14—C15—O2	-177.46 (18)
C4—N2—C3—C2	-1.0 (2)	C13-C14-C15-C10	1.2 (3)
C4—N3—C5—C6	153.35 (14)	C14—O1—C16—O2	-16.4 (2)
C4—N3—C7—C8	-152.42 (14)	C15—O2—C16—O1	16.9 (2)
C5—N3—C4—N1	159.58 (14)	C15—C10—C11—C9	176.11 (14)
C5—N3—C4—N2	-22.4 (2)	C15-C10-C11-C12	-2.0(2)
C5—N3—C7—C8	52.93 (18)	C16—O1—C14—C13	-172.2 (2)
C6—N4—C8—C7	60.01 (17)	C16—O1—C14—C15	9.7 (2)
C6—N4—C9—C11	-72.26 (17)	C16—O2—C15—C10	170.46 (18)
C7—N3—C4—N1	6.8 (2)	C16—O2—C15—C14	-11.0 (2)
C7—N3—C4—N2	-175.17 (13)		

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the pyrimidine ring and Cg2 is the centroid of the benzene ring.

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C2—H2···Cg1 ⁱ	0.93	2.83	3.6771 (17)	152

supporting information

С9—H9 <i>B</i> … <i>Cg</i> 1 ^{іі}	0.97	2.92	3.8090 (18)	152
C16—H16 A ···· $Cg2^{iii}$	0.97	2.80	3.689 (2)	153

Symmetry codes: (i) *x*, -*y*-1/2, *z*-1/2; (ii) *x*, *y*, *z*-1; (iii) *x*, -*y*+1/2, *z*-1/2.