supplementary materials


hb7081 scheme

Acta Cryst. (2013). E69, o1129    [ doi:10.1107/S1600536813013238 ]

7-Bromo-3,3-dibutyl-8-methoxy-2,3-dihydro-1,5-benzothiazepin-4(5H)-one

C. V. Deepu, M. Manjula, K. J. Pampa, D. G. Bhadregowda and N. K. Lokanath

Abstract top

In the title compound C18H26BrNO2S, the thiazepine ring adopts a boat conformation. The dihedral angle between the mean planes through the benzene ring and the four C atoms making up the basal plane of the boat is 35.8 (2)°. In the crystal, inversion dimers linked by pairs of N-H...O hydrogen bonds generate R22(8) loops.

Comment top

The title compound C18H25BrNO2S, was synthesized from 3,3-dibutyl-2,3- dihydro-8-methoxybenzo[b][1,4]thiazepin-4(5H)-one. The molecule is a bicyclic structure with one aromatic ring fused to a seven membered ring, on which two heteroatoms are present. The derivatives of this molecule able to provide high affinity ligands for more than one type of the receptor (Fedi et al., 2008). The compound is mainly used to treat schizophrenia and also find applications as neuroleptics, antidepressants, antihistaminic (Ganesh et al., 2011; Riedel et al., 2007). The N14—C13 bond is shorter than an usual N—C single bond [1.356 Å compared to 1.416 Å (Allen et al. 1987)]. The atoms C5, C6, C11 and C12 present in the central thiazepine ring forms a basal plane and the S10 atom as the bow, representing the boat conformation of thiazepine ring.

Related literature top

For reference bond lengths, see: Allen et al. (1987). For background to the uses of this class of compounds, see: Fedi et al. (2008); Ganesh et al. (2011); Riedel et al. (2007).

Experimental top

3,3-dibutyl-2,3-dihydro-8-methoxybenzo[b][1,4]thiazepin-4(5H)-one in dichloromethane, acetonitrile, cooled to 5°C and added N-bromosuccinimide over a period of 15 min. Then reaction mixture was brought to room temperature, stirred for 2 h and again cooled to 5°C, then N-bromosuccinimide is added at 5°C, cooled to -5°C for 1 h, filtered, washed with cold acetonitrile and then dried in vacuum and product was recrystallized from acetonitrile solution to yield light brown blocks.

Refinement top

All hydrogen atoms were located geometrically with C—H = 0.93–0.97 Å and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(aromatic C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. View of the title molecule with 50% probability ellipsoids.
[Figure 2] Fig. 2. Packing diagram of molecule, viewed along the crystallographic b axis.
7-Bromo-3,3-dibutyl-8-methoxy-2,3-dihydrobenzo[b][1,4]thiazepin-4(5H)-one top
Crystal data top
C18H26BrNO2SF(000) = 832
Mr = 400.30Dx = 1.392 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4662 reflections
a = 7.7844 (18) Åθ = 2.0–28.3°
b = 11.251 (2) ŵ = 2.27 mm1
c = 22.039 (6) ÅT = 100 K
β = 98.199 (8)°Block, light brown
V = 1910.5 (8) Å30.32 × 0.20 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2750 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Graphite monochromatorθmax = 28.3°, θmin = 2.0°
Detector resolution: 16.0839 pixels mm-1h = 108
ω scansk = 149
16056 measured reflectionsl = 2929
4662 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1275P)2 + 0.4493P]
where P = (Fo2 + 2Fc2)/3
4662 reflections(Δ/σ)max = 0.001
212 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C18H26BrNO2SV = 1910.5 (8) Å3
Mr = 400.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.7844 (18) ŵ = 2.27 mm1
b = 11.251 (2) ÅT = 100 K
c = 22.039 (6) Å0.32 × 0.20 × 0.20 mm
β = 98.199 (8)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2750 reflections with I > 2σ(I)
16056 measured reflectionsRint = 0.054
4662 independent reflectionsθmax = 28.3°
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.141Δρmax = 0.63 e Å3
S = 1.03Δρmin = 0.49 e Å3
4662 reflectionsAbsolute structure: ?
212 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br90.72841 (5)0.01588 (4)0.86915 (2)0.0731 (2)
S100.09376 (11)0.21269 (7)0.99530 (4)0.0494 (3)
O20.4327 (3)0.12202 (18)0.90398 (11)0.0548 (8)
O150.2816 (3)0.53731 (17)0.97428 (10)0.0420 (7)
N140.3916 (3)0.35886 (16)0.95950 (10)0.0418 (8)
C10.3047 (3)0.20519 (16)0.91627 (10)0.0621 (15)
C30.4122 (4)0.0060 (2)0.91890 (15)0.0399 (10)
C40.2747 (4)0.0385 (3)0.94491 (15)0.0412 (10)
C50.2640 (4)0.1590 (2)0.95831 (14)0.0383 (10)
C60.3919 (3)0.2370 (2)0.94450 (14)0.0377 (9)
C70.5283 (4)0.1922 (3)0.91780 (15)0.0424 (10)
C80.5387 (4)0.0733 (3)0.90492 (15)0.0435 (10)
C110.0156 (4)0.3122 (3)0.93772 (15)0.0460 (10)
C120.0909 (4)0.4072 (3)0.90861 (14)0.0386 (9)
C130.2596 (3)0.4382 (2)0.95076 (14)0.0353 (9)
C160.0182 (4)0.5206 (3)0.89941 (17)0.0481 (11)
C170.1953 (5)0.5099 (3)0.8591 (2)0.0743 (16)
C180.2889 (6)0.6281 (5)0.8496 (2)0.0915 (19)
C190.2269 (11)0.7005 (6)0.8047 (4)0.165 (4)
C200.1333 (4)0.3605 (3)0.84640 (14)0.0467 (11)
C210.2456 (6)0.4427 (4)0.81384 (18)0.0743 (16)
C220.2854 (7)0.3940 (6)0.7533 (2)0.105 (2)
C230.3966 (11)0.4756 (7)0.7214 (3)0.165 (4)
H1A0.304800.210900.959700.0940*
H1B0.330200.281600.900400.0940*
H1C0.192600.179200.897000.0940*
H40.187700.012700.953600.0490*
H70.614600.243400.908400.0510*
H11A0.073900.263500.904700.0550*
H11B0.105200.353400.955900.076 (12)*
H140.489300.386800.976700.061 (10)*
H16A0.049000.580500.881500.0580*
H16B0.037200.549400.939400.053 (10)*
H17A0.178800.477600.819600.0890*
H17B0.267100.454700.878100.0890*
H18A0.411700.613400.837400.1100*
H18B0.275800.670800.888200.1100*
H19A0.123800.741300.822700.2470*
H19B0.314200.757600.789500.2470*
H19C0.200700.651600.771500.2470*
H20A0.192100.284600.853200.0560*
H20B0.025200.346600.819600.0560*
H21A0.186900.518500.806600.0890*
H21B0.354000.456800.840500.0890*
H22A0.344100.318200.760500.1260*
H22B0.177100.380000.726600.1260*
H23A0.327300.540300.703100.2480*
H23B0.444000.432300.690000.2480*
H23C0.489400.506100.750500.2480*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br90.0585 (3)0.0543 (3)0.1145 (4)0.0039 (2)0.0399 (2)0.0172 (2)
S100.0463 (5)0.0452 (5)0.0608 (6)0.0023 (3)0.0220 (4)0.0027 (4)
O20.0634 (15)0.0289 (11)0.0748 (16)0.0011 (10)0.0188 (12)0.0065 (11)
O150.0329 (11)0.0317 (11)0.0600 (14)0.0040 (8)0.0020 (10)0.0114 (10)
N140.0289 (13)0.0310 (13)0.0642 (17)0.0052 (10)0.0019 (12)0.0106 (12)
C10.077 (3)0.0328 (18)0.076 (3)0.0101 (17)0.009 (2)0.0023 (17)
C30.0439 (17)0.0286 (15)0.0460 (19)0.0026 (12)0.0022 (14)0.0037 (13)
C40.0390 (16)0.0333 (16)0.052 (2)0.0074 (12)0.0092 (14)0.0011 (14)
C50.0352 (16)0.0348 (16)0.0456 (18)0.0019 (12)0.0082 (13)0.0042 (13)
C60.0296 (14)0.0308 (15)0.0513 (19)0.0023 (11)0.0010 (13)0.0054 (13)
C70.0292 (15)0.0367 (16)0.062 (2)0.0051 (12)0.0090 (14)0.0041 (15)
C80.0360 (16)0.0391 (17)0.057 (2)0.0014 (13)0.0125 (14)0.0067 (15)
C110.0302 (15)0.0442 (17)0.064 (2)0.0063 (13)0.0080 (15)0.0109 (16)
C120.0308 (15)0.0375 (16)0.0469 (18)0.0047 (12)0.0033 (13)0.0078 (14)
C130.0297 (14)0.0309 (15)0.0464 (18)0.0038 (11)0.0097 (13)0.0034 (13)
C160.0361 (17)0.0452 (18)0.061 (2)0.0002 (13)0.0003 (16)0.0098 (16)
C170.050 (2)0.064 (3)0.099 (3)0.0067 (18)0.023 (2)0.008 (2)
C180.072 (3)0.098 (4)0.093 (3)0.040 (3)0.028 (3)0.029 (3)
C190.200 (8)0.089 (4)0.193 (8)0.039 (5)0.013 (7)0.019 (5)
C200.0398 (17)0.0490 (19)0.050 (2)0.0056 (14)0.0020 (14)0.0106 (15)
C210.083 (3)0.088 (3)0.055 (2)0.022 (2)0.021 (2)0.006 (2)
C220.108 (4)0.159 (5)0.052 (3)0.046 (4)0.026 (3)0.017 (3)
C230.151 (7)0.270 (10)0.081 (4)0.078 (6)0.037 (4)0.028 (5)
Geometric parameters (Å, º) top
Br9—C81.885 (3)C1—H1A0.9600
S10—C51.759 (3)C1—H1B0.9600
S10—C111.811 (3)C1—H1C0.9600
O2—C11.421 (3)C4—H40.9300
O2—C31.361 (3)C7—H70.9300
O15—C131.231 (3)C11—H11A0.9700
N14—C61.410 (3)C11—H11B0.9700
N14—C131.354 (3)C16—H16A0.9700
N14—H140.8600C16—H16B0.9700
C3—C41.378 (4)C17—H17A0.9700
C3—C81.395 (4)C17—H17B0.9700
C4—C51.393 (4)C18—H18A0.9700
C5—C61.393 (4)C18—H18B0.9700
C6—C71.381 (4)C19—H19A0.9600
C7—C81.372 (5)C19—H19B0.9600
C11—C121.547 (5)C19—H19C0.9600
C12—C131.537 (4)C20—H20A0.9700
C12—C161.530 (5)C20—H20B0.9700
C12—C201.547 (4)C21—H21A0.9700
C16—C171.535 (5)C21—H21B0.9700
C17—C181.517 (6)C22—H22A0.9700
C18—C191.418 (9)C22—H22B0.9700
C20—C211.521 (6)C23—H23A0.9600
C21—C221.515 (6)C23—H23B0.9600
C22—C231.503 (10)C23—H23C0.9600
C5—S10—C11101.39 (14)S10—C11—H11B107.00
C1—O2—C3118.4 (2)C12—C11—H11A107.00
C6—N14—C13129.4 (2)C12—C11—H11B107.00
C13—N14—H14115.00H11A—C11—H11B107.00
C6—N14—H14115.00C12—C16—H16A108.00
C4—C3—C8118.3 (3)C12—C16—H16B108.00
O2—C3—C4125.0 (3)C17—C16—H16A108.00
O2—C3—C8116.7 (3)C17—C16—H16B108.00
C3—C4—C5121.0 (3)H16A—C16—H16B107.00
S10—C5—C4120.3 (2)C16—C17—H17A109.00
S10—C5—C6119.61 (18)C16—C17—H17B109.00
C4—C5—C6120.1 (3)C18—C17—H17A109.00
N14—C6—C5122.4 (2)C18—C17—H17B109.00
C5—C6—C7118.7 (2)H17A—C17—H17B108.00
N14—C6—C7118.8 (2)C17—C18—H18A109.00
C6—C7—C8121.1 (3)C17—C18—H18B109.00
Br9—C8—C3119.5 (2)C19—C18—H18A109.00
Br9—C8—C7119.6 (2)C19—C18—H18B109.00
C3—C8—C7120.9 (3)H18A—C18—H18B108.00
S10—C11—C12119.4 (2)C18—C19—H19A110.00
C11—C12—C20109.1 (3)C18—C19—H19B109.00
C13—C12—C16107.5 (3)C18—C19—H19C109.00
C13—C12—C20109.9 (2)H19A—C19—H19B109.00
C16—C12—C20110.5 (3)H19A—C19—H19C109.00
C11—C12—C16108.1 (3)H19B—C19—H19C110.00
C11—C12—C13111.6 (2)C12—C20—H20A109.00
O15—C13—C12121.0 (2)C12—C20—H20B109.00
O15—C13—N14118.7 (2)C21—C20—H20A109.00
N14—C13—C12120.1 (2)C21—C20—H20B109.00
C12—C16—C17116.6 (3)H20A—C20—H20B108.00
C16—C17—C18112.7 (3)C20—C21—H21A109.00
C17—C18—C19113.3 (5)C20—C21—H21B109.00
C12—C20—C21114.9 (3)C22—C21—H21A109.00
C20—C21—C22113.5 (4)C22—C21—H21B109.00
C21—C22—C23113.3 (5)H21A—C21—H21B108.00
O2—C1—H1A109.00C21—C22—H22A109.00
O2—C1—H1B109.00C21—C22—H22B109.00
O2—C1—H1C109.00C23—C22—H22A109.00
H1A—C1—H1B109.00C23—C22—H22B109.00
H1A—C1—H1C109.00H22A—C22—H22B108.00
H1B—C1—H1C110.00C22—C23—H23A109.00
C3—C4—H4119.00C22—C23—H23B109.00
C5—C4—H4119.00C22—C23—H23C110.00
C6—C7—H7120.00H23A—C23—H23B109.00
C8—C7—H7119.00H23A—C23—H23C110.00
S10—C11—H11A107.00H23B—C23—H23C109.00
C11—S10—C5—C4117.4 (3)C5—C6—C7—C80.0 (5)
C11—S10—C5—C665.0 (3)C6—C7—C8—Br9179.4 (2)
C5—S10—C11—C1251.1 (3)C6—C7—C8—C30.5 (5)
C1—O2—C3—C40.6 (5)S10—C11—C12—C1323.9 (4)
C1—O2—C3—C8178.7 (3)S10—C11—C12—C16142.0 (2)
C13—N14—C6—C547.0 (4)S10—C11—C12—C2097.8 (3)
C13—N14—C6—C7136.2 (3)C11—C12—C13—O15113.0 (3)
C6—N14—C13—O15170.9 (3)C11—C12—C13—N1471.2 (3)
C6—N14—C13—C1213.2 (4)C16—C12—C13—O155.4 (4)
O2—C3—C4—C5179.6 (3)C16—C12—C13—N14170.4 (3)
C8—C3—C4—C51.5 (5)C20—C12—C13—O15125.7 (3)
O2—C3—C8—Br91.6 (4)C20—C12—C13—N1450.0 (4)
O2—C3—C8—C7179.5 (3)C11—C12—C16—C1758.6 (4)
C4—C3—C8—Br9179.9 (2)C13—C12—C16—C17179.2 (3)
C4—C3—C8—C71.2 (5)C20—C12—C16—C1760.8 (4)
C3—C4—C5—S10176.5 (3)C11—C12—C20—C21177.2 (3)
C3—C4—C5—C61.1 (5)C13—C12—C20—C2154.5 (4)
S10—C5—C6—N140.5 (4)C16—C12—C20—C2164.1 (4)
S10—C5—C6—C7177.3 (2)C12—C16—C17—C18176.6 (3)
C4—C5—C6—N14177.2 (3)C16—C17—C18—C1979.1 (6)
C4—C5—C6—C70.3 (5)C12—C20—C21—C22179.7 (3)
N14—C6—C7—C8177.0 (3)C20—C21—C22—C23179.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14···O15i0.862.132.985 (3)175
C11—H11B···O15ii0.972.523.473 (4)166
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC18H26BrNO2S
Mr400.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)7.7844 (18), 11.251 (2), 22.039 (6)
β (°) 98.199 (8)
V3)1910.5 (8)
Z4
Radiation typeMo Kα
µ (mm1)2.27
Crystal size (mm)0.32 × 0.20 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16056, 4662, 2750
Rint0.054
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.141, 1.03
No. of reflections4662
No. of parameters212
No. of restraints0
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.49

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).

Selected geometric parameters (Å, º) top
Br9—C81.885 (3)O2—C31.361 (3)
S10—C51.759 (3)O15—C131.231 (3)
S10—C111.811 (3)N14—C61.410 (3)
O2—C11.421 (3)N14—C131.354 (3)
C5—S10—C11101.39 (14)N14—C6—C7118.8 (2)
C1—O2—C3118.4 (2)Br9—C8—C3119.5 (2)
C6—N14—C13129.4 (2)Br9—C8—C7119.6 (2)
O2—C3—C4125.0 (3)S10—C11—C12119.4 (2)
O2—C3—C8116.7 (3)O15—C13—C12121.0 (2)
S10—C5—C4120.3 (2)O15—C13—N14118.7 (2)
S10—C5—C6119.61 (18)N14—C13—C12120.1 (2)
N14—C6—C5122.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14···O15i0.86002.13002.985 (3)175.00
C11—H11B···O15ii0.97002.52003.473 (4)166.00
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+2.
Acknowledgements top

MM thanks the IOE and the University of Mysore for the award of a fellowship and research grants. The data collection was performed at the Solid Sate and Structural Chemistry Unit, IISC.

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Fedi, V., Guidi, A. & Altamura, M. (2008). Mini Rev. Med. Chem. 8, 1464–1484.

Ganesh, D. M., Yogesh, M. K., Ashok, K., Dharmendra, S., Kisan, M. K. & Suresh, B. M. (2011). Indian J. Chem. Sect. B, 50, 1197–1201.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.

Riedel, M., Mueller, N., Strassnig, M., Spellman, I., Severus, E. & Moeller, H. J. (2007). Neuropsy. Dis. Treat. 3, 219–235.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.