\times 0.20 mm

17765 measured reflections 4964 independent reflections

 $R_{\rm int} = 0.027$

335 parameters

 $\Delta \rho_{\rm max} = 0.22 \text{ e } \text{\AA}^-$

 $\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

4116 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

6-(4-Methoxyphenyl)-6a-nitro-6,6a,6b,7,8,9,10,12a-octahydrospiro-[chromeno[3,4-a]indolizine-12,3'indolin]-2'-one

Seenivasan Karthiga Devi,^a Thothadri Srinivasan,^a Jonnalagadda Naga Siva Rao,^b Raghavachary Raghunathan^b and Devadasan Velmurugan^a*

^aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India Correspondence e-mail: shirai2011@gmail.com

Received 23 May 2013; accepted 3 June 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.042; wR factor = 0.119; data-to-parameter ratio = 14.8.

In the title compound, $C_{29}H_{27}N_3O_5$, the hydropyran ring adopts an envelope conformation with the methine C atom bearing the *para*-methoxybenzene ring as the flap. The central pyrrolidine ring has a twist conformation on the N-C bond involving the spiro C atom. The piperidine ring adopts a chair conformation. An intramolecular C-H···O contact closes an S(7) ring. In the crystal, inversion dimers linked by C-H···O interactions generate $R_2^2(18)$ loops and N-H···O hydrogen bonds connect the dimers into [100] chains.

Related literature

For a related structure and background to 4H-chromene derivatives, see: Devi et al. (2013).

Experimental

Crystal data

C ₂₉ H ₂₇ N ₃ O ₅	$\gamma = 66.757 \ (1)^{\circ}$
$M_r = 497.54$	V = 1222.49 (7) Å ³
Triclinic, P1	Z = 2
a = 9.3438 (3) Å	Mo $K\alpha$ radiation
b = 11.3626 (4) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 13.5713 (4) Å	T = 293 K
$\alpha = 68.687 \ (1)^{\circ}$	$0.30 \times 0.25 \times 0.20$
$\beta = 88.284 \ (1)^{\circ}$	

Data collection

Bruker SMART APEXII diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2008) $T_{\min} = 0.973, T_{\max} = 0.982$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.119$ S = 1.034964 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3-H3A\cdots O3^{i}$	0.86	2.24	3.085 (2)	167
C14−H14···O5 ⁱⁱ	0.93	2.54	3.358 (2)	147
С8−Н8…О5	0.98	2.40	3.234 (2)	143

Symmetry codes: (i) x + 1, y, z; (ii) -x + 2, -y + 1, -z + 2.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. SK,TS and DV thank the UGC (SAP-CAS) for the departmental facilties. SK also thanks DST PURSE for a Junior Research Fellowship and TS also thanks DST Inspire for a fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7087).

References

- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Devi, S. K., Srinivasan, T., Rao, J. N. S., Raghunathan, R. & Velmurugan, D. (2013) Acta Cryst. E69 0993.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2013). E69, o1047 [https://doi.org/10.1107/S1600536813015341]

6-(4-Methoxyphenyl)-6a-nitro-6,6a,6b,7,8,9,10,12a-octahydrospiro-[chromeno[3,4-a]indolizine-12,3'-indolin]-2'-one

Seenivasan Karthiga Devi, Thothadri Srinivasan, Jonnalagadda Naga Siva Rao, Raghavachary Raghunathan and Devadasan Velmurugan

S1. Comment

As part of our ongoing studies of 4H-chromene derivatives (Devi *et al.*, 2013), we have synthesized the title compound (Fig. 1) and report herein its crystal structure.

The hydropyrrolidine ring adopts an *envelope* conformation, the piperidine ring adopts a *chair* conformation and the pyran ring adopts an *envelope* conformation. The pyrrolidine ring (N2/C9/C10/C17/C22) makes a dihedral angle of 86.78 (8)° with the other pyrrolidine ring (N3/C22/C23/C28/C29) which shows that they are almost orthogonal to each other. The pyrrolidine ring makes a dihedral angle of 29.65 (8)° with the pyran ring (O2/C8-C11/C16), it makes a dihedral angle of 8.88 (9)° with the piperidine ring (N2/C17-C21).

The other pyrrolidine ring (N3/C22/C23/C28/C29) makes a dihedral angle of 71.63 (8)° with the pyran ring, it makes a dihedral angle of 86.84 (8)° with the piperidine ring which shows that they are almost at right angles to each other. The dihedral angle between the pyran ring and the piperidine ring is 30.34 (8)°. The oxygen atom O5 attached with pyrrolidine ring deviates by -0.0200 (1)Å. The nitrogroup attached with the pyrrolidine ring makes a diherdal angle of 88.83 (1)° which shows it is in orthogonal orientation. The crystal packing features N—H…O, C—H…O hydrogen bonds and intramolecular C—H…O hydrogen bonds.

S2. Experimental

To a solution of isatin (lequiv) and piperidine-2-carboxylic acid (1.4 equiv) in dry toluene, was added 2-(4-methoxyphenyl)-3-nitro-2H-chromene (lequiv) under nitrogen atmosphere. The reaction mixture was refluxed for 24h in Dean-Stark apparatus to give the cycloadducts. After completion of the reaction as indicated by TLC, the solvent was evaporated under reduced pressure. The crude product was extracted with dichloromethane. The organic layer was dried with anhydrous sodium sulphate and concentrated in vacuo. Then the crude product was purified by column chromatography using hexane/EtOAc (7:3) as eluent. Colourless blocks were obtained by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

S3. Refinement

The hydrogen atoms were placed in calculated positions and treated as riding atoms: C - H = 0.93 Å to 0.97 Å, and N - H = 0.86 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Figure 2

The crystal packing of the title compound viewed down *b* axis. H-atoms not involved in H-bonds have been excluded for clarity.

6-(4-Methoxy phenyl)-6a-nitro-6, 6a, 6b, 7, 8, 9, 10, 12a-octahydrospiro [chromeno [3, 4-a] indolizine -12, 3'-barrier and a straight of the straight of the

indolin]-2'-one

-	
C ₂₉ H ₂₇ N ₃ O ₅	$\gamma = 66.757 \ (1)^{\circ}$
$M_r = 497.54$	V = 1222.49 (7) Å ³
Triclinic, $P\overline{1}$	Z = 2
Hall symbol: -P 1	F(000) = 524
a = 9.3438 (3) Å	$D_{\rm x} = 1.352 {\rm ~Mg} {\rm ~m}^{-3}$
b = 11.3626 (4) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 13.5713 (4) Å	Cell parameters from 4964 reflections
$\alpha = 68.687 \ (1)^{\circ}$	$\theta = 1.6 - 26.4^{\circ}$
$\beta = 88.284 \ (1)^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$

T = 293 KBlock, colourless

Data collection

Bruker SMART APEXII diffractometer	17765 measured reflections 4964 independent reflections
Radiation source: fine-focus sealed tube	4116 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.027$
ω and φ scans	$\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 1.6^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(SADABS; Bruker, 2008)	$k = -14 \rightarrow 14$
$T_{\min} = 0.973, \ T_{\max} = 0.982$	$l = -16 \rightarrow 16$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from

 $0.30 \times 0.25 \times 0.20 \text{ mm}$

 $2\sigma(F^2)$ ydrogen site location: inferred from 0.042 K|T $wR(F^2) = 0.119$ neighbouring sites S = 1.03H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0598P)^2 + 0.279P]$ 4964 reflections where $P = (F_0^2 + 2F_c^2)/3$ 335 parameters 0 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ Å}^{-3}$ Primary atom site location: structure-invariant $\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.2341 (3)	1.0337 (2)	0.38130 (16)	0.0993 (8)	
H1A	0.3106	1.0725	0.3690	0.149*	
H1B	0.1336	1.1041	0.3434	0.149*	
H1C	0.2654	0.9592	0.3564	0.149*	
C2	0.3493 (2)	0.87030 (17)	0.55807 (14)	0.0637 (5)	
C3	0.4983 (2)	0.82230 (18)	0.53115 (14)	0.0682 (5)	
Н3	0.5192	0.8662	0.4634	0.082*	
C4	0.6175 (2)	0.70767 (16)	0.60584 (13)	0.0592 (4)	
H4	0.7191	0.6778	0.5883	0.071*	
C5	0.58892 (17)	0.63663 (15)	0.70583 (11)	0.0455 (3)	
C6	0.43845 (19)	0.68872 (17)	0.73146 (13)	0.0545 (4)	
H6	0.4165	0.6446	0.7988	0.065*	
C7	0.3206 (2)	0.80484 (19)	0.65897 (14)	0.0650 (5)	
H7	0.2207	0.8393	0.6783	0.078*	

C8	0.72252 (16)	0.51114 (14)	0.78326 (10)	0.0408 (3)
H8	0.8151	0.5325	0.7724	0.049*
C9	0.77152 (15)	0.36977 (13)	0.77426 (10)	0.0367 (3)
C10	0.91910 (15)	0.26057 (13)	0.85468 (10)	0.0366 (3)
H10	0.9014	0.1758	0.8865	0.044*
C11	0.94489 (16)	0.29989 (14)	0.94587 (10)	0.0397 (3)
C12	1.07826 (18)	0.21855 (17)	1.02158 (11)	0.0507 (4)
H12	1.1586	0.1446	1.0117	0.061*
C13	1.0931 (2)	0.2457 (2)	1.11079 (12)	0.0600 (4)
H13	1.1843	0.1920	1.1595	0.072*
C14	0.9731(2)	0.35255 (19)	1.12802 (12)	0.0594(4)
H14	0.9817	0.3685	1.1896	0.071*
C15	0.8405(2)	0.43555(17)	1.05410(12)	0.0536(4)
H15	0.7598	0 5081	1.0652	0.064*
C16	0.82846(17)	0.40991(15)	0.96263(11)	0.0434(3)
C17	0.81967 (15)	0.37337(14)	0.90209(11) 0.66400(10)	0.0383(3)
H17	0.8471	0.4528	0.6321	0.046*
C18	0.01/1 0.70480 (18)	0.38308(17)	0.0521 0.58150(11)	0.0499(4)
H18A	0.6086	0.4661	0.5662	0.0499 (4)
H18R	0.6790	0.3032	0.6082	0.060*
C19	0.0790 0.7827 (2)	0.38777(19)	0.0002 0.48083 (12)	0.0508(4)
H194	0.7627(2) 0.7147	0.3871	0.4286	0.072*
H19R	0.7975	0.3371	0.4505	0.072*
C20	0.7975	0.7751 0.26524 (10)	0.4505	0.072
U20	0.9400(2)	0.20524(19)	0.30478 (13)	0.0390 (4)
1120A 1120B	0.9914	0.2738	0.4409	0.071*
C21	1.04685 (18)	0.1011 0.25141 (17)	0.5244	0.071
	1.04085 (18)	0.23141 (17)	0.53404 (11)	0.0491(3) 0.050*
1121A 1121B	1.1419	0.1008	0.0123	0.059
П21Б С22	1.0704	0.3292 0.22002 (12)	0.3710 0.78451 (10)	0.039°
C22	1.03240(13) 1.19780(16)	0.22993(13)	0.78431(10) 0.83232(10)	0.0300(3)
C23	1.10700(10) 1.10077(18)	0.06993(14)	0.85252(10)	0.0392(3)
C24	1.19077 (18)	-0.04123 (13)	0.87141(11)	0.0470(3)
П24 С25	1.0983	-0.0558	0.0094	0.050°
C25	1.3337 (2)	-0.13412 (10)	0.91579(15)	0.0348 (4)
П23 С26	1.5572	-0.2432	0.9410	0.000^{-1}
C26	1.4/10(2)	-0.13609 (17)	0.91551 (14)	0.0615 (4)
H26	1.3660	-0.2133	0.9431	$0.0/4^{*}$
C27	1.46969 (18)	-0.004/1(1/)	0.87613 (14)	0.0586 (4)
H27	1.3621	0.0077	0.8773	0.070*
C28	1.326/9 (16)	0.10650 (15)	0.83550 (11)	0.0438(3)
C29	1.13735 (15)	0.32878 (14)	0.76355 (10)	0.0389 (3)
NI	0.64091 (14)	0.31789 (13)	0.79590 (9)	0.0446 (3)
N2	0.96439 (13)	0.24825 (11)	0.68832 (8)	0.0386 (3)
N3	1.29296 (14)	0.24880 (12)	0.79328 (10)	0.0497 (3)
H3A	1.3632	0.2813	0.7871	0.060*
01	0.22311 (19)	0.98242 (14)	0.49209 (11)	0.0914 (5)
02	0.69437 (12)	0.49773 (11)	0.89032 (8)	0.0493 (3)
03	0.50728 (14)	0.39968 (14)	0.78486 (14)	0.0836 (4)

04	0.67564 (14)	0.19579 (13)	0.81793 (11)	0.0701 (4)
05	1.07592 (12)	0.45448 (10)	0.72573 (8)	0.0485 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	U^{23}
C1	0.128 (2)	0.0676 (13)	0.0613 (12)	-0.0123 (13)	-0.0229 (13)	-0.0090 (10)
C2	0.0710 (11)	0.0486 (9)	0.0556 (10)	-0.0075 (8)	-0.0074 (8)	-0.0206 (7)
C3	0.0848 (13)	0.0505 (9)	0.0519 (9)	-0.0195 (9)	0.0094 (9)	-0.0099 (7)
C4	0.0602 (10)	0.0478 (8)	0.0600 (10)	-0.0199 (7)	0.0149 (8)	-0.0135 (7)
C5	0.0483 (8)	0.0446 (7)	0.0462 (8)	-0.0193 (6)	0.0045 (6)	-0.0199 (6)
C6	0.0531 (9)	0.0602 (9)	0.0457 (8)	-0.0154 (7)	0.0068 (7)	-0.0241 (7)
C7	0.0541 (10)	0.0673 (11)	0.0596 (10)	-0.0054 (8)	0.0015 (8)	-0.0304 (8)
C8	0.0400 (7)	0.0477 (7)	0.0402 (7)	-0.0220 (6)	0.0063 (6)	-0.0187 (6)
C9	0.0339 (6)	0.0453 (7)	0.0378 (7)	-0.0239 (6)	0.0051 (5)	-0.0151 (5)
C10	0.0362 (7)	0.0427 (7)	0.0359 (6)	-0.0236 (6)	0.0053 (5)	-0.0125 (5)
C11	0.0420 (7)	0.0513 (8)	0.0331 (6)	-0.0291 (6)	0.0071 (5)	-0.0134 (6)
C12	0.0474 (8)	0.0644 (9)	0.0392 (7)	-0.0252 (7)	0.0042 (6)	-0.0161 (7)
C13	0.0591 (10)	0.0822 (12)	0.0394 (8)	-0.0333 (9)	-0.0015 (7)	-0.0187 (8)
C14	0.0792 (12)	0.0772 (11)	0.0373 (8)	-0.0457 (10)	0.0069 (8)	-0.0236 (7)
C15	0.0669 (10)	0.0598 (9)	0.0446 (8)	-0.0330 (8)	0.0120 (7)	-0.0241 (7)
C16	0.0484 (8)	0.0513 (8)	0.0378 (7)	-0.0288 (7)	0.0068 (6)	-0.0158 (6)
C17	0.0380 (7)	0.0444 (7)	0.0362 (6)	-0.0213 (6)	0.0051 (5)	-0.0146 (5)
C18	0.0468 (8)	0.0604 (9)	0.0435 (8)	-0.0216 (7)	-0.0022 (6)	-0.0209 (7)
C19	0.0664 (11)	0.0727 (11)	0.0398 (8)	-0.0267 (9)	0.0001 (7)	-0.0228 (7)
C20	0.0666 (11)	0.0744 (11)	0.0442 (8)	-0.0288 (9)	0.0105 (7)	-0.0301 (8)
C21	0.0486 (8)	0.0600 (9)	0.0450 (8)	-0.0253 (7)	0.0138 (6)	-0.0243 (7)
C22	0.0360 (7)	0.0426 (7)	0.0376 (6)	-0.0234 (6)	0.0056 (5)	-0.0144 (5)
C23	0.0392 (7)	0.0450 (7)	0.0379 (7)	-0.0217 (6)	0.0059 (5)	-0.0160 (5)
C24	0.0510 (8)	0.0494 (8)	0.0487 (8)	-0.0293 (7)	0.0091 (6)	-0.0182 (6)
C25	0.0640 (10)	0.0435 (8)	0.0549 (9)	-0.0243 (7)	0.0090 (7)	-0.0145 (7)
C26	0.0498 (9)	0.0505 (9)	0.0681 (11)	-0.0124 (7)	0.0006 (8)	-0.0138 (8)
C27	0.0394 (8)	0.0575 (9)	0.0737 (11)	-0.0205 (7)	0.0006 (7)	-0.0184 (8)
C28	0.0390 (7)	0.0470 (8)	0.0484 (8)	-0.0220 (6)	0.0055 (6)	-0.0169 (6)
C29	0.0387 (7)	0.0455 (7)	0.0396 (7)	-0.0244 (6)	0.0089 (5)	-0.0164 (6)
N1	0.0391 (6)	0.0572 (7)	0.0465 (6)	-0.0290 (6)	0.0070 (5)	-0.0194 (5)
N2	0.0374 (6)	0.0472 (6)	0.0363 (6)	-0.0217 (5)	0.0050 (5)	-0.0167 (5)
N3	0.0365 (6)	0.0502 (7)	0.0676 (8)	-0.0271 (5)	0.0056 (6)	-0.0181 (6)
01	0.0928 (11)	0.0680 (8)	0.0653 (8)	0.0075 (7)	-0.0170 (7)	-0.0163 (7)
O2	0.0470 (6)	0.0582 (6)	0.0428 (5)	-0.0181 (5)	0.0061 (4)	-0.0235 (5)
O3	0.0361 (6)	0.0715 (8)	0.1459 (13)	-0.0282 (6)	0.0131 (7)	-0.0380 (8)
O4	0.0591 (7)	0.0610 (7)	0.1013 (10)	-0.0415 (6)	0.0089 (7)	-0.0243 (7)
O5	0.0477 (6)	0.0437 (6)	0.0584 (6)	-0.0260(5)	0.0113 (5)	-0.0166 (5)

Geometric parameters (Å, °)

C101	1.418 (3)	C16—O2	1.3797 (17)
C1—H1A	0.9600	C17—N2	1.4584 (17)

C1—H1B	0.9600	C17—C18	1.5187 (18)
C1—H1C	0.9600	С17—Н17	0.9800
C2—O1	1.365 (2)	C18—C19	1.522 (2)
C2—C3	1.373 (3)	C18—H18A	0.9700
C2—C7	1.377 (3)	C18—H18B	0.9700
C3—C4	1.388 (2)	C19—C20	1.513 (2)
С3—Н3	0.9300	С19—Н19А	0.9700
C4—C5	1.384 (2)	С19—Н19В	0.9700
C4—H4	0.9300	C20—C21	1.523 (2)
C5—C6	1.383 (2)	C20—H20A	0.9700
C5—C8	1 5101 (19)	C20—H20B	0 9700
C6—C7	1.377(2)	C_{21} N2	1 4634 (18)
С6—Н6	0.9300	C_{21} H21A	0.9700
C7—H7	0.9300	C21—H21B	0.9700
C_{8}	1 4321 (16)	C^{22} N2	1 4681 (16)
C_{8}	1.4321(10) 1.5374(10)	$C_{22} = 102$	1.4001(10) 1.5041(19)
	0.0800	$\begin{array}{cccc} C22 & C23 \\ C22 & C29 \\ \end{array}$	1.5041(17)
$C_0 = N_1$	1,5300 (16)	$C_{22} = C_{23}$	1.3390(17) 1.3774(10)
C_{9} C_{17}	1.5309(10) 1.5404(18)	$C_{23} = C_{24}$	1.3774(19) 1.3870(10)
C_{9}	1.3404(10) 1.5452(17)	$C_{23} = C_{28}$	1.3079(19)
C_{10}	1.3432(17) 1.5146(19)	$C_{24} = C_{23}$	1.383(2)
	1.3140(18)	C24—H24	0.9300
C10-C22	1.5516 (18)	$C_{25} = C_{26}$	1.378 (2)
	0.9800	C25—H25	0.9300
	1.384 (2)	C_{26}	1.386 (2)
C11—C12	1.3929 (19)	C26—H26	0.9300
C12—C13	1.377 (2)	C27—C28	1.375 (2)
C12—H12	0.9300	C27—H27	0.9300
C13—C14	1.379 (3)	C28—N3	1.4060 (18)
C13—H13	0.9300	C29—O5	1.2126 (16)
C14—C15	1.376 (2)	C29—N3	1.3522 (18)
C14—H14	0.9300	N1—O3	1.1997 (17)
C15—C16	1.391 (2)	N1—O4	1.2118 (16)
C15—H15	0.9300	N3—H3A	0.8600
O1—C1—H1A	109.5	C18—C17—H17	107.3
O1—C1—H1B	109.5	С9—С17—Н17	107.3
H1A—C1—H1B	109.5	C17—C18—C19	107.80 (12)
01—C1—H1C	109.5	C17—C18—H18A	110.1
H1A—C1—H1C	109.5	C19—C18—H18A	110.1
H1B—C1—H1C	109.5	C17—C18—H18B	110.1
O1—C2—C3	124.88 (18)	C19—C18—H18B	110.1
O1—C2—C7	115.56 (17)	H18A—C18—H18B	108.5
C3—C2—C7	119.55 (16)	C20—C19—C18	111.05 (13)
C2—C3—C4	119.46 (17)	С20—С19—Н19А	109.4
С2—С3—Н3	120.3	C18—C19—H19A	109.4
С4—С3—Н3	120.3	C20—C19—H19B	109.4
C5—C4—C3	121.68 (16)	C18—C19—H19B	109.4
C5—C4—H4	119.2	H19A—C19—H19B	108.0

C3—C4—H4	119.2	C19—C20—C21	112 21 (13)
C6-C5-C4	117.54 (14)	C19 - C20 - H20A	109.2
C6-C5-C8	122 97 (13)	C_{21} C_{20} H_{20A}	109.2
C4-C5-C8	11943(14)	C19-C20-H20B	109.2
$C_{7} - C_{6} - C_{5}$	121.09(16)	C_{21} C_{20} H_{20B}	109.2
C7—C6—H6	119.5	$H_{20}A = C_{20} = H_{20}B$	107.9
C5-C6-H6	119.5	N_{2} C_{21} C_{20}	107.9 109.45(12)
C_{2} C_{7} C_{6}	120 55 (17)	$N_2 = C_{21} = C_{20}$	109.15 (12)
C2—C7—H7	119.7	C_{20} C_{21} H_{21A}	109.8
C6-C7-H7	119.7	$N_2 - C_{21} - H_{21}B$	109.8
$0^{2}-0^{8}-0^{5}$	109 55 (11)	C_{20} C_{21} H_{21B}	109.8
02 - 03 - 03	109.39 (11)	$H_{21}A = C_{21} = H_{21}B$	109.0
$C_{2} = C_{3} = C_{2}$	119 53 (11)	N_{2}^{2}	112.92 (11)
$C_{3} = C_{8} = C_{9}$	105.8	$N_2 - C_{22} - C_{23}$ $N_2 - C_{22} - C_{10}$	112.92(11) 100.87(10)
C5-C8-H8	105.8	C_{23} C_{22} C_{10}	100.37(10) 115.71(10)
C9-C8-H8	105.8	N_{2}	113.71(10) 113.85(10)
$N_1 = C_0 = C_8$	112.02(11)	$C_{22}^{23} = C_{22}^{22} = C_{23}^{20}$	101.58(10)
N1 = C9 = C3	112.02(11) 108.63(10)	$C_{23} = C_{22} = C_{23}$	101.38(10) 112.49(10)
$C_{8} = C_{9} = C_{17}$	108.03(10) 112.21(11)	$C_{10} - C_{22} - C_{23}$	112.49(10) 110.70(13)
C_{3} C_{9} C_{10}	112.21(11) 108.43(10)	$C_{24} = C_{23} = C_{26}$	119.79(13) 130.71(12)
$C_{8} - C_{9} - C_{10}$	110.21(10)	$C_{24} = C_{23} = C_{22}$	100.71(12)
C_{17} C_{9} C_{10}	105.04(10)	$C_{23} = C_{23} = C_{22}$	109.49(11) 11873(14)
$C_{11} - C_{10} - C_{9}$	113 46 (11)	$C_{23} = C_{24} = C_{23}$	120.6
$C_{11} = C_{10} = C_{22}$	118 45 (10)	$C_{25} = C_{24} = H_{24}$	120.6
$C_{10} - C_{22}$	104 58 (10)	$C_{25} = C_{25} = C_{24}$	120.0 120.80(14)
$C_{11} = C_{10} = H_{10}$	106.5	$C_{20} = C_{25} = C_{24}$	119.6
C_{10} H_{10}	106.5	$C_{20} = C_{25} = H_{25}$	119.6
C_{22} C_{10} H_{10}	106.5	$C_{24} = C_{25} = H_{25}$	121.06 (15)
C_{16} C_{11} C_{12}	117 84 (13)	$C_{25} = C_{26} = C_{27}$	110 5
$C_{10} = C_{11} = C_{12}$	117.64(13) 120 54 (12)	$C_{25} = C_{26} = H_{26}$	119.5
C_{12} C_{11} C_{10}	120.34(12) 121.28(13)	C_{28} C_{27} C_{26} C_{27} C_{26}	117.54 (15)
$C_{12} = C_{11} = C_{10}$	121.20(15) 121.10(15)	$C_{28} = C_{27} = C_{20}$	121.2
C13 - C12 - C11	119.5	$C_{26} = C_{27} = H_{27}$	121.2
C11_C12_H12	119.5	$C_{20} = C_{27} = C_{23}$	121.2 122.06(13)
C12 - C12 - C12	120 11 (15)	$C_{27} = C_{28} = C_{23}$	122.00 (13)
C12 - C13 - H13	119.9	C_{23} C_{28} N3	120.00(13) 109.08(12)
C12 - C13 - H13	119.9	05-C29-N3	126.03(12)
C15-C14-C13	120.08 (14)	05 - C29 - C22	126.05(12) 126.45(12)
C15 - C14 - H14	120.00 (14)	N3-C29-C22	10751(11)
C13—C14—H14	120.0	03—N1—04	107.01(11) 122(10(12))
C14-C15-C16	119 42 (15)	03-N1-C9	11937(12)
C14-C15-H15	120.3	04-N1-C9	118 39 (12)
C16—C15—H15	120.3	C17 - N2 - C21	110.39(12) 111.30(11)
02-C16-C11	120.5 121.60(12)	C17 - N2 - C22	107.05 (10)
02-C16-C15	117.02 (13)	$C_{21} = N_{2} = C_{22}$	116.93 (10)
$C_{11} - C_{16} - C_{15}$	121.37 (14)	$C_{29} N_{3} C_{28}$	112.30 (11)
N2-C17-C18	110.64 (11)	C29—N3—H3A	123.8
N2-C17-C9	104 11 (10)	C28—N3—H3A	123.8

C18—C17—C9	119.60 (11)	C2-01-C1	118.13 (17)
N2—C17—H17	107.3	C16—O2—C8	112.06 (10)
			()
O1—C2—C3—C4	179.39 (17)	C9—C10—C22—C23	-154.69 (10)
C7—C2—C3—C4	0.6 (3)	C11—C10—C22—C29	-38.33 (15)
C2—C3—C4—C5	2.6 (3)	C9—C10—C22—C29	89.17 (12)
C3—C4—C5—C6	-3.7(3)	N2—C22—C23—C24	-59.95(18)
C3—C4—C5—C8	178.97 (15)	C10—C22—C23—C24	55.57 (19)
C4—C5—C6—C7	1.7 (2)	C29—C22—C23—C24	177.72 (14)
C8-C5-C6-C7	178.92 (15)	N2-C22-C23-C28	121.06(12)
$01 - C^2 - C^7 - C^6$	178 54 (17)	C10-C22-C23-C28	-12342(12)
$C_{3}-C_{2}-C_{7}-C_{6}$	-2.5(3)	C_{29} C_{22} C_{23} C_{28}	-1.27(14)
$C_{5} - C_{6} - C_{7} - C_{2}^{2}$	14(3)	C_{28} C_{23} C_{24} C_{25} C_{25}	0.4(2)
C6-C5-C8-O2	-26.75(18)	$C_{20} = C_{23} = C_{24} = C_{25}$	-17855(13)
$C_{4} = C_{5} = C_{8} = O_{2}^{2}$	15040(14)	$C_{22} = C_{23} = C_{24} = C_{25} = C_{26}$	-11(2)
$C_{1}^{-} C_{2}^{-} C_{3}^{-} C_{2}^{-} C_{3}^{-} C_{2}^{-}$	100.70(17)	$C_{23} = C_{24} = C_{23} = C_{20}$	1.1(2)
$C_{0} - C_{2} - C_{3} - C_{3}$	-82.15(18)	$C_{24} = C_{25} = C_{20} = C_{27}$	-0.2(3)
$C_{4} = C_{3} = C_{8} = C_{9}$	62.13(10)	$C_{25} = C_{20} = C_{27} = C_{28} = C_{23}$	-0.5(3)
02 - 03 - 09 - 01	-64.26(16)	$C_{20} = C_{27} = C_{28} = C_{25}$	-0.3(2)
$C_{3} = C_{8} = C_{9} = N_{1}$	-04.20(10)	$C_{20} = C_{27} = C_{28} = C_{37}$	1/8.04(13)
02 - 03 - 09 - 017	-1/4.28(10)	$C_{24} = C_{23} = C_{28} = C_{27}$	0.5(2)
$C_{3} = C_{8} = C_{9} = C_{17}$	58.25 (10)	$C_{22} = C_{23} = C_{28} = C_{27}$	179.58 (14)
02 - 03 - 09 - 010	-5/.00(13)	$C_{24} = C_{23} = C_{28} = N_3$	-1/8.85(12)
$C_{3} = C_{8} = C_{9} = C_{10}$	1/4.92 (11)	C22—C23—C28—N3	0.27(16)
NI-C9-C10-C11	-102.41(12)	N2-C22-C29-05	58.98 (18)
C8—C9—C10—C11	20.53 (14)	C23—C22—C29—O5	-179.33 (13)
C17—C9—C10—C11	141.59 (11)	C10—C22—C29—O5	-54.99 (17)
N1—C9—C10—C22	127.09 (10)	N2—C22—C29—N3	-119.81 (12)
C8—C9—C10—C22	-109.97 (11)	C23—C22—C29—N3	1.87 (13)
C17—C9—C10—C22	11.09 (12)	C10—C22—C29—N3	126.22 (12)
C9—C10—C11—C16	11.56 (17)	C8—C9—N1—O3	22.46 (18)
C22-C10-C11-C16	134.74 (13)	C17—C9—N1—O3	-102.05 (16)
C9—C10—C11—C12	-175.29 (12)	C10—C9—N1—O3	144.30 (14)
C22-C10-C11-C12	-52.11 (17)	C8—C9—N1—O4	-161.64 (12)
C16—C11—C12—C13	0.7 (2)	C17—C9—N1—O4	73.85 (15)
C10-C11-C12-C13	-172.64 (14)	C10—C9—N1—O4	-39.80 (16)
C11—C12—C13—C14	1.8 (3)	C18—C17—N2—C21	63.88 (14)
C12—C13—C14—C15	-2.4 (3)	C9—C17—N2—C21	-166.40 (10)
C13—C14—C15—C16	0.5 (2)	C18—C17—N2—C22	-167.21 (11)
C12-C11-C16-O2	178.36 (12)	C9—C17—N2—C22	-37.49 (12)
C10-C11-C16-O2	-8.27 (19)	C20-C21-N2-C17	-58.79 (15)
C12-C11-C16-C15	-2.6 (2)	C20-C21-N2-C22	177.76 (12)
C10-C11-C16-C15	170.76 (12)	C23—C22—N2—C17	168.07 (10)
C14—C15—C16—O2	-178.89 (13)	C10-C22-N2-C17	43.95 (12)
C14-C15-C16-C11	2.0 (2)	C29—C22—N2—C17	-76.77 (13)
N1-C9-C17-N2	-101.06 (11)	C23—C22—N2—C21	-66.33 (15)
C8—C9—C17—N2	134.53 (11)	C10-C22-N2-C21	169.55 (11)
C10—C9—C17—N2	14.79 (12)	C29—C22—N2—C21	48.83 (16)
N1—C9—C17—C18	23.05 (16)	O5—C29—N3—C28	179.32 (13)

C8-C9-C17-C18 $C10-C9-C17-C18$ $N2-C17-C18-C19$ $C9-C17-C18-C19$ $C17-C18-C19-C20$ $C18-C19-C20-C21$ $C19-C20-C21-N2$ $C11-C10-C22-N2$ $C9-C10-C22-N2$ $C11-C10-C22-N2$	-101.35 (14)	C22—C29—N3—C28	-1.88 (16)
	138.91 (12)	C27—C28—N3—C29	-178.18 (15)
	-60.27 (15)	C23—C28—N3—C29	1.07 (17)
	178.82 (12)	C3—C2—O1—C1	16.0 (3)
	54.91 (18)	C7—C2—O1—C1	-165.1 (2)
	-53.21 (19)	C11—C16—O2—C8	-30.37 (17)
	53.69 (18)	C15—C16—O2—C8	150.56 (13)
	-160.01 (11)	C5—C8—O2—C16	-163.66 (11)
	-32.51 (12)	C9—C8—O2—C16	63.46 (14)
C11—C10—C22—C23	77.81 (14)	0, 00 02 010	05.10 (11)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···· A	D—H···A	
N3—H3 <i>A</i> ···O3 ⁱ	0.86	2.24	3.085 (2)	167	
C14—H14…O5 ⁱⁱ	0.93	2.54	3.358 (2)	147	
С8—Н8…О5	0.98	2.40	3.234 (2)	143	

Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y+1, -z+2.