[Journal logo]

Volume 69 
Part 7 
Pages o1143-o1144  
July 2013  

Received 17 June 2013
Accepted 17 June 2013
Online 22 June 2013

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.004 Å
R = 0.043
wR = 0.111
Data-to-parameter ratio = 17.2
Details
Open access

(2E)-1-(4-Bromophenyl)-3-[3-(4-methoxyphenyl)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one

aDepartment of Chemistry, BITS, Pilani - K. K. Birla Goa Campus, Goa 403 726, India,bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
Correspondence e-mail: edward.tiekink@gmail.com

The pyrazole ring in the title compound, C25H19BrN2O2, is almost planar (r.m.s. deviation = 0.003 Å) and forms dihedral angles of 7.56 (13) and 56.48 (13)° with the N- and C-bound benzene rings, respectively. The prop-2-en-1-one residue has an E conformation about the C=C double bond [1.328 (4) Å] and is almost coplanar with the pyrazole ring [C-C-C-C torsion angle = -174.4 (3)°]. A twist between the prop-2-en-1-one unit and the terminal benzene ring is evident [C-C-C-C torsion angle = -15.4 (4)°]. In the crystal, molecules are consolidated into a three-dimensional architecture by C-H...O, C-H...[pi] and [pi]-[pi] [centroid-centroid separation = 3.7597 (16) Å] interactions.

Related literature

For background details and biological applications of pyrazole and chalcones, see: Babasaheb et al. (2009[Babasaheb, P. B., Shrikant, S. G., Ragini, G. B., Nalini, M. G. & Chandrahasya, N. K. (2009). Bioorg. Med. Chem. 17, 8168-8173.]); Prasath & Bhavana (2012[Prasath, R. & Bhavana, P. (2012). Heteroat. Chem. 23, 525-530.]); Prasath et al. (2013[Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2013). J. Organomet. Chem. 726, 62-70.]). For the structure of the 4-methoxyphenyl pyrazole compound, see: Fun et al. (2011[Fun, H.-K., Quah, C. K., Malladi, S., Hebbar, R. & Isloor, A. M. (2011). Acta Cryst. E67, o3105.]).

[Scheme 1]

Experimental

Crystal data
  • C25H19BrN2O2

  • Mr = 459.33

  • Triclinic, [P \overline 1]

  • a = 7.3643 (3) Å

  • b = 10.6795 (5) Å

  • c = 13.1038 (6) Å

  • [alpha] = 91.822 (4)°

  • [beta] = 101.311 (4)°

  • [gamma] = 91.792 (3)°

  • V = 1009.31 (8) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 2.06 mm-1

  • T = 100 K

  • 0.50 × 0.40 × 0.30 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Tmin = 0.921, Tmax = 1.000

  • 8736 measured reflections

  • 4649 independent reflections

  • 3875 reflections with I > 2[sigma](I)

  • Rint = 0.038

Refinement
  • R[F2 > 2[sigma](F2)] = 0.043

  • wR(F2) = 0.111

  • S = 1.04

  • 4649 reflections

  • 271 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.47 e Å-3

  • [Delta][rho]min = -0.55 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1-C6 ring.

D-H...A D-H H...A D...A D-H...A
C11-H11...O1i 0.95 2.25 3.198 (3) 173
C25-H25B...Cg1ii 0.98 2.61 3.478 (3) 148
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) -x+2, -y+2, -z+1.

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7095 ).


Acknowledgements

PB and RP gratefully acknowledge the Council of Scientific and Industrial Research (CSIR), India, for research grant 02 (0076)/12/EMR-II and Senior Research Fellowship (09/919/(0014)/2012 EMR-I), respectively. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

References

Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.
Babasaheb, P. B., Shrikant, S. G., Ragini, G. B., Nalini, M. G. & Chandrahasya, N. K. (2009). Bioorg. Med. Chem. 17, 8168-8173.  [PubMed]
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Fun, H.-K., Quah, C. K., Malladi, S., Hebbar, R. & Isloor, A. M. (2011). Acta Cryst. E67, o3105.  [CSD] [CrossRef] [IUCr Journals]
Prasath, R. & Bhavana, P. (2012). Heteroat. Chem. 23, 525-530.  [Web of Science] [CrossRef] [ChemPort]
Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2013). J. Organomet. Chem. 726, 62-70.  [CSD] [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2013). E69, o1143-o1144   [ doi:10.1107/S1600536813016838 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.