Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Benzyl-5-ethyl-5-hydroxy-1H-pyrrol-2(5H)-one

Yan-Jiao Gao, Yu-Huang Wang and Jian-Liang Ye*

The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China

Correspondence e-mail: yejl@xmu.edu.cn

Received 17 June 2013; accepted 18 June 2013

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; R factor = 0.044; wR factor = 0.145; data-to-parameter ratio = 13.4.

The title compound, C13H15NO2, was obtained as a by-product in the Grignard reaction of malimide. The dihedral angle between the five-membred ring (r.m.s. deviation = 0.005 Å) and the benzene ring is $67.20 (14)^\circ$. The benzene ring and the ethyl chain lie to the same side of the five-membered ring. In the crystal, molecules are linked by $O-H \cdots O$ hydrogen bonds, generating C(6) chains propagating in [010].

Related literature

For background to the Grignard reaction of malimide, see: Huang (2006); He et al. (2003). For related structures, see: Goh et al. (2007); Ma & Xie (2002).

Experimental

Crystal data

02

	* 3
$C_{13}H_{15}NO_2$	$V = 582.6 (2) \text{ A}^3$
$M_r = 215.27$	Z = 2
Monoclinic, P2 ₁	Mo $K\alpha$ radiation
a = 7.0399 (14) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 7.1795 (14) Å	T = 173 K
c = 11.817 (2) Å	$0.3 \times 0.2 \times 0.2$ mm
$\beta = 102.72 \ (3)^{\circ}$	
$\beta = 102.72 \ (3)^{\circ}$	

Diffraction, 2010) $T_{\min} = 0.980, \ T_{\max} = 0.983$

 $R_{\rm int} = 0.054$

3363 measured reflections

1947 independent reflections

1811 reflections with $I > 2\sigma(I)$

Data collection

Oxford Diffraction Xcalibur	
(Sapphire3, Gemini ultra)	
diffractometer	
Absorption correction: multi-scan	
(CrysAlis PRO; Oxford	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	1 restraint
$wR(F^2) = 0.145$	H-atom parameters constrained
S = 1.13	$\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$
1947 reflections	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$
145 parameters	

Table 1 Hydrogen-bond geometry (Å, °).

D-

$-H\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$-H2A\cdotsO1^{i}$	0.82	1.95	2.772 (3)	176
·····	1 1 1			

Symmetry code: (i) $-x, y + \frac{1}{2}, -z + 2$.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the NSF of Fujian Province of China (2011J01056) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7096).

References

Goh, W. K., Iskander, G., Black, D. S. & Kumar, N. (2007). Tetrahedron Lett. 48, 2287-2290.

He, B. Y., Wu, T. J., Yu, X. Y. & Huang, P. Q. (2003). Tetrahedron Asymmetry, 14, 2101-2108.

Huang, P.-Q. (2006). Synlett, pp. 1133-1149.

Ma, S. & Xie, H. (2002). J. Org. Chem. 67, 6575-6578.

Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, o1136 [https://doi.org/10.1107/S1600536813016887]

1-Benzyl-5-ethyl-5-hydroxy-1*H*-pyrrol-2(5*H*)-one

Yan-Jiao Gao, Yu-Huang Wang and Jian-Liang Ye

S1. Comment

Using Grignard reagents as the nucleophiles allows a flexible introduction of diverse side chains at the C-2 carbonyl of malimides (Huang, 2006). In addition, Grignard reagents are essentially strong bases, so the addition of a Grignard reagent to a malimide provided an unexpected 3-alkoxy group elimination product *rac*-1-benzyl-5-methyl-1*H*-pyrrol-2(*5H*)-one (He *et al.*, 2003). Recently a new addition-elimination product, *rac*-1-benzyl-5-ethyl-5-hydroxy-1*H*-pyrrol-2(*5H*)-one, was found in the Grignard addition reaction. Here we report the structure of the title compound.

In γ -lactam ring the vinyl carbon atoms remain almost coplanar with the amide moiety [r.m.s. 0.0006 Å], which are agreement with the similar compounds (Goh *et al.*, 2007; Ma & Xie, 2002). In the crystal, the molecules are linked by O —H…O hydrogen bonds between the hydroxyl group and the oxygen atom of the carbonyl group.

S2. Experimental

To a stirred solution of (*S*)-*N*,*O*-benzyl-malimide ((*S*)-1-benzyl-3-(benzyloxy)pyrrolidine-2,5-dione) (2 mmol) in anhydrous CH₂Cl₂ (20 ml) was added dropwise EtMgBr (4 mmol) in diethyl ether at -20 °C under nitrogen atmosphere. The mixture was stirred at -20 °C for 1 h and then quenched by adding a saturated aqueous solution of NH₄Cl. The mixture was extracted with CH₂Cl₂ (4 × 10 ml). The combined extracts were washed with brine, dried over Na₂SO4, concentrated under reduced pressure. The residue was purified by flash chromatography (eluent: EtOAc/PE = 1: 2; then 2: 1), provided a mixture of diastereomers (4*S*)-1-benzyl-4-(benzyloxy)-5-ethyl-5-hydroxypyrrolidin-2-one as major products (white crystals, yield 85%) and the title compound as minor product (colourless crystals, yield 10%). Colourless pillars of the tiltle compound were obtained by slow evaporation of a mixture of *n*-hexane/ethyl acetate solution.

S3. Refinement

The hydrogen atoms were positioned geometrically, with C—H = 0.93, 0.98, 0.97 and 0.96 Å for phenyl, methine, methylene and methyl H atoms, respectively, and were included in the refinement in the riding model approximation. The displacement parameters of methyl H atoms were set to $1.5U_{eq}(C)$, while those of other H atoms were set to $1.2U_{eq}(C)$. In the absence of significant anomalous scattering effects the absolute structure of the chosen crystal was indeterminate.

The molecular structure of the title compound showing 50% probability displacement ellipsoids.

Figure 2

The packing of the molecules, viewed down the *a* axis. O—H…O hydrogen bond interactions are shown as dashed lines.

1-Benzyl-5-ethyl-5-hydroxy-1H-pyrrol-2(5H)-one

Crystal data

 $C_{13}H_{15}NO_2$ $M_r = 215.27$ Monoclinic, $P2_1$ a = 7.0399 (14) Å b = 7.1795 (14) Å c = 11.817 (2) Å $\beta = 102.72 (3)^\circ$ $V = 582.6 (2) Å^3$ Z = 2

Data collection

Oxford Diffraction Xcalibur (Sapphire3, Gemini ultra)	$T_{\min} = 0.980, T_{\max} = 0.983$ 3363 measured reflections
diffractometer	1947 independent reflections
Radiation source: Enhance (Mo) X-ray Source	1811 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int}=0.054$
Detector resolution: 16.1903 pixels mm ⁻¹	$\theta_{\rm max} = 27.0^\circ, \ \theta_{\rm min} = 3.0^\circ$
phi and ω scans	$h = -8 \longrightarrow 8$
Absorption correction: multi-scan	$k = -9 \longrightarrow 9$
(CrysAlis PRO; Oxford Diffraction, 2010)	$l = -14 \rightarrow 15$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.145$	neighbouring sites
<i>S</i> = 1.13	H-atom parameters constrained
1947 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0893P)^2 + 0.0423P]$
145 parameters	where $P = (F_0^2 + 2F_c^2)/3$

F(000) = 230

 $\theta = 3.0-27.0^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$

Pillar, colourless

 $0.3 \times 0.2 \times 0.2$ mm

T = 173 K

 $D_{\rm x} = 1.227 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2119 reflections

direct methods

Primary atom site location: structure-invariant

Special details

1 restraint

Experimental. Absorption correction: CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.44. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.32 \ {\rm e} \ {\rm \AA}^{-3}$

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	-0.2177 (3)	0.6481 (3)	0.96950 (15)	0.0294 (4)
N1	-0.0106 (3)	0.7331 (3)	0.85306 (15)	0.0214 (4)

C1	-0.2478 (4)	0.4825 (5)	0.4747 (2)	0.0383 (7)
H1A	-0.2359	0.4924	0.3981	0.046*
O2	0.2472 (3)	0.9389 (2)	0.83792 (15)	0.0294 (4)
H2A	0.2397	1.0049	0.8934	0.044*
C2	-0.3230 (4)	0.3208 (5)	0.5114 (2)	0.0403 (7)
H2B	-0.36	0.2222	0.4602	0.048*
C3	-0.3426 (4)	0.3079 (5)	0.6254 (2)	0.0352 (6)
H3A	-0.3927	0.2	0.6511	0.042*
C4	0.2774 (4)	0.6967 (4)	0.9869 (2)	0.0291 (6)
H4A	0.4086	0.6937	1.0235	0.035*
C5	-0.1894 (4)	0.6312 (4)	0.5507 (2)	0.0325 (6)
H5A	-0.1362	0.738	0.5255	0.039*
C6	-0.1548 (4)	0.7814 (4)	0.74846 (19)	0.0254 (5)
H6A	-0.1033	0.8808	0.7084	0.03*
H6B	-0.2707	0.8281	0.7706	0.03*
C7	0.2009 (4)	0.7521 (3)	0.8611 (2)	0.0241 (5)
C8	-0.2875 (4)	0.4557 (4)	0.7009 (2)	0.0283 (6)
H8A	-0.3016	0.4459	0.7771	0.034*
C9	-0.0541 (3)	0.6758 (3)	0.95313 (19)	0.0225 (5)
C10	-0.2118 (3)	0.6177 (4)	0.66498 (19)	0.0252 (5)
C11	0.1357 (4)	0.6535 (4)	1.0372 (2)	0.0300 (6)
H11A	0.151	0.6149	1.1138	0.036*
C12	0.2726 (4)	0.6284 (4)	0.7756 (2)	0.0286 (6)
H12A	0.4104	0.652	0.7826	0.034*
H12B	0.2061	0.6643	0.6978	0.034*
C13	0.2442 (4)	0.4196 (4)	0.7893 (2)	0.0335 (6)
H13A	0.2931	0.3535	0.7311	0.05*
H13B	0.1081	0.3932	0.7807	0.05*
H13C	0.3136	0.3806	0.8649	0.05*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0328 (9)	0.0290 (11)	0.0303 (9)	-0.0023 (8)	0.0153 (7)	-0.0011 (8)
N1	0.0209 (9)	0.0227 (10)	0.0203 (8)	0.0000 (8)	0.0035 (7)	-0.0002 (8)
C1	0.0360 (14)	0.053 (2)	0.0254 (12)	0.0033 (15)	0.0061 (10)	-0.0087 (13)
O2	0.0358 (10)	0.0214 (10)	0.0325 (9)	-0.0076 (8)	0.0104 (7)	0.0009 (7)
C2	0.0317 (14)	0.052 (2)	0.0370 (14)	-0.0020 (14)	0.0067 (11)	-0.0215 (14)
C3	0.0295 (14)	0.0360 (16)	0.0398 (14)	-0.0060 (12)	0.0068 (11)	-0.0067 (12)
C4	0.0289 (12)	0.0263 (14)	0.0283 (11)	-0.0024 (11)	-0.0020 (9)	0.0022 (10)
C5	0.0311 (13)	0.0398 (16)	0.0260 (12)	0.0042 (12)	0.0049 (10)	0.0011 (12)
C6	0.0249 (12)	0.0254 (13)	0.0242 (11)	0.0054 (10)	0.0017 (9)	0.0016 (10)
C7	0.0224 (11)	0.0218 (13)	0.0274 (11)	-0.0005 (10)	0.0039 (8)	0.0017 (10)
C8	0.0237 (11)	0.0339 (16)	0.0268 (11)	0.0028 (11)	0.0047 (8)	-0.0044 (11)
C9	0.0300 (12)	0.0150 (11)	0.0230 (10)	-0.0016 (10)	0.0069 (8)	-0.0021 (9)
C10	0.0196 (10)	0.0320 (14)	0.0222 (10)	0.0058 (11)	0.0004 (8)	-0.0033 (10)
C11	0.0363 (13)	0.0278 (14)	0.0225 (11)	-0.0053 (12)	-0.0008 (9)	0.0013 (10)
C12	0.0244 (12)	0.0275 (14)	0.0362 (13)	0.0000 (10)	0.0118 (9)	0.0008 (11)

supporting information C13 0.0310 (14) 0.0260 (13) 0.0449 (14) 0.0059 (12) 0.0114 (11) -0.0022(12)Geometric parameters (Å, °) O1-C9 1.225 (3) C5-C10 1.397 (3) N1-C9 C5—H5A 1.349(3)0.93 N1-C6 1.458 (3) C6-C10 1.530(3)N1-C7 1.477 (3) C6—H6A 0.97 0.97 C1-C21.385 (5) C6—H6B C1---C5 1.397 (4) C7-C12 1.513 (4) 0.93 C1—H1A C8-C10 1.384 (4) O2—C7 1.421(3)C8—H8A 0.93 O2—H2A 0.82 C9-C11 1.488 (3) C2—C3 1.387 (4) C11—H11A 0.93 C2—H2B 0.93 C12-C13 1.526 (4) C3—C8 1.386(4) C12-H12A 0.97 С3—НЗА 0.93 C12-H12B 0.97 C4-C11 1.306 (4) C13—H13A 0.96 C4—C7 C13—H13B 0.96 1.518(3)0.96 C4—H4A 0.93 C13-H13C C9-N1-C6 O2-C7-C4 112.9 (2) 124.4(2)C9-N1-C7 113.05 (18) N1-C7-C4 100.05 (19) C6-N1-C7 122.47 (19) C12-C7-C4 113.7 (2) 121.2 (2) C2-C1-C5 121.2(2)C10-C8-C3 C2-C1-H1A 119.4 C10-C8-H8A 119.4 C5-C1-H1A 119.4 C3-C8-H8A 119.4 C7-02-H2A O1-C9-N1 109.5 126.2 (2) C1-C2-C3 O1-C9-C11 119.1(3)127.9 (2) C1-C2-H2B 120.4 N1-C9-C11 105.9(2)C3—C2—H2B 120.4 C8-C10-C5 119.2 (2) C8-C3-C2 120.0 (3) C8-C10-C6 120.7(2)С8—С3—НЗА 120 C5-C10-C6 120.0 (2) С2—С3—НЗА 120 C4-C11-C9 109.5 (2) C11-C4-C7 111.5(2)C4-C11-H11A 125.3

C9-C11-H11A

C7-C12-H12A

C13-C12-H12A

C7-C12-H12B

C13-C12-H12B

H12A-C12-H12B

C12-C13-H13A

C12-C13-H13B

C12-C13-H13C

H13A-C13-H13B

H13A-C13-H13C

H13B-C13-H13C

C7-C12-C13

C11-C4-H4A

C7-C4-H4A

C10-C5-C1

C10-C5-H5A

C1-C5-H5A

N1-C6-C10

N1-C6-H6A

С10-С6-Н6А

N1-C6-H6B

С10-С6-Н6В

H6A-C6-H6B

O2-C7-N1

O2-C7-C12

124.3

124.3

120.4

120.4

108.9

108.9

108.9

108.9

107.7

110.21 (19)

107.48 (19)

119.2 (3)

113.5 (2)

125.3

108.3

108.3

108.3

108.3

107.4

109.5

109.5

109.5

109.5

109.5

109.5

115.8 (2)

N1—C7—C12	112.5 (2)			
C5—C1—C2—C3	0.8 (4)	C7—N1—C9—O1	-179.5 (2)	
C1—C2—C3—C8	0.1 (4)	C6—N1—C9—C11	-176.7 (2)	
C2-C1-C5-C10	-1.5 (4)	C7—N1—C9—C11	0.3 (3)	
C9—N1—C6—C10	-92.1 (3)	C3—C8—C10—C5	-0.5 (4)	
C7—N1—C6—C10	91.2 (3)	C3—C8—C10—C6	178.9 (2)	
C9—N1—C7—O2	-119.7 (2)	C1—C5—C10—C8	1.4 (4)	
C6—N1—C7—O2	57.4 (3)	C1—C5—C10—C6	-178.0 (2)	
C9—N1—C7—C12	120.4 (2)	N1—C6—C10—C8	57.8 (3)	
C6—N1—C7—C12	-62.5 (3)	N1—C6—C10—C5	-122.8 (2)	
C9—N1—C7—C4	-0.6 (3)	C7—C4—C11—C9	-0.6 (3)	
C6—N1—C7—C4	176.5 (2)	O1—C9—C11—C4	180.0 (3)	
C11—C4—C7—O2	117.8 (3)	N1—C9—C11—C4	0.2 (3)	
C11—C4—C7—N1	0.7 (3)	O2—C7—C12—C13	177.5 (2)	
C11—C4—C7—C12	-119.4 (3)	N1-C7-C12-C13	-61.0 (3)	
C2-C3-C8-C10	-0.2 (4)	C4—C7—C12—C13	51.8 (3)	
C6—N1—C9—O1	3.5 (4)			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O2—H2A···O1 ⁱ	0.82	1.95	2.772 (3)	176

Symmetry code: (i) -x, y+1/2, -z+2.