[Journal logo]

Volume 69 
Part 7 
Page o1142  
July 2013  

Received 17 June 2013
Accepted 17 June 2013
Online 22 June 2013

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.002 Å
R = 0.035
wR = 0.099
Data-to-parameter ratio = 17.1
Details
Open access

3-Acetyl-2,4-dimethylquinolin-1-ium chloride

aDepartment of Chemistry, BITS, Pilani - K. K. Birla Goa Campus, Goa 403 726, India,bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
Correspondence e-mail: edward.tiekink@gmail.com

In the title salt, C13H14NO+·Cl-, the dihedral angle between the fused ring system (r.m.s. deviation = 0.039 Å) and the attached aldehyde group is 75.27 (16)°. In the crystal, the cation and anion are linked by an N-H...Cl hydrogen bond and the resulting pairs are connected into four-ion aggregates by [pi]-[pi] interactions between the C6 and pyridinium rings [3.6450 (9) Å] of inversion-related quinolinium residues.

Related literature

For background details and biological applications of quinoline and quinoline chalcones, see: Joshi et al. (2011[Joshi, R. S., Mandhane, P. G., Khan, W. & Gill, C. H. (2011). J. Heterocycl. Chem. 48, 872-876.]); Prasath et al. (2013a[Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2013a). J. Organomet. Chem. 726, 62-70.]). For a related structure, see: Prasath et al. (2013b[Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2013b). Acta Cryst. E69, o428-o429.]).

[Scheme 1]

Experimental

Crystal data
  • C13H14NO+·Cl-

  • Mr = 235.70

  • Orthorhombic, P b c a

  • a = 12.8221 (6) Å

  • b = 10.7281 (4) Å

  • c = 16.3785 (6) Å

  • V = 2252.97 (16) Å3

  • Z = 8

  • Mo K[alpha] radiation

  • [mu] = 0.32 mm-1

  • T = 100 K

  • 0.50 × 0.40 × 0.30 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Tmin = 0.956, Tmax = 1.000

  • 8404 measured reflections

  • 2597 independent reflections

  • 2207 reflections with I > 2[sigma](I)

  • Rint = 0.030

Refinement
  • R[F2 > 2[sigma](F2)] = 0.035

  • wR(F2) = 0.099

  • S = 1.04

  • 2597 reflections

  • 152 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.29 e Å-3

  • [Delta][rho]min = -0.29 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N1-H1...Cl1 0.91 (2) 2.13 (2) 3.0374 (13) 175.4 (17)

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7097 ).


Acknowledgements

PB and RP gratefully acknowledge the Council of Scientific and Industrial Research (CSIR), India, for research grant 02 (0076)/12/EMR-II and Senior Research Fellowship (09/919/(0014)/2012 EMR-I), respectively. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/12).

References

Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Joshi, R. S., Mandhane, P. G., Khan, W. & Gill, C. H. (2011). J. Heterocycl. Chem. 48, 872-876.  [CrossRef] [ChemPort]
Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2013a). J. Organomet. Chem. 726, 62-70.  [CSD] [CrossRef] [ChemPort]
Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2013b). Acta Cryst. E69, o428-o429.  [CrossRef] [ChemPort] [IUCr Journals]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2013). E69, o1142  [ doi:10.1107/S160053681301684X ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.