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The asymmetric unit of the title compound, C5H7N2
+.I3
�,

consists of one 2-aminopyridin-1-ium cation (apyH+) and one

triiodide anion, both located in general postions. The apyH+

cation is planar within the experimental uncertainties. The

short N—C distance [1.328 (5) Å] of the exocyclic NH2 group

is typical for the imino-form of protonated 2-aminopyridines.

Consequently, the bond lengths within the six-membered ring

vary significantly. The geometric parameters of the triiodide

anion are in the typical range, with bond lengths of 2.8966 (3)

and 2.9389 (3) Å and a bond angle of 176.02 (1)�. In the

crystal, N—H � � � I hydrogen bonds connect adjacent ions into

screwed chains along the b-axis direction. These chains are

twisted pairwise into rectangular rods. The pyridinium

moieties of neighbouring rods are arranged parallel to each

other with a plane-to-plane distance of 3.423 (5) Å.

Related literature

For the biological activity of aminopyridines, see: Bolliger et

al. (2011); Muñoz-Caro & Niño (2002). For aminopyridinium

salts with non-linear optical properties, see: Srinivasan &

Priolkar (2013); Shkir et al. (2012); Periyasamy et al. (2007).

For the spectroscopy of aminopyridinium salts, see: Çırak et al.

(2011). For bond-order calculations, see: Brown (2009). For

the protonation and electronic structure of 2 amiopyridin-1-

ium cations, see: Chapkanov (2010); Chai et al. (2009); Testa &

Wild (1981). For the spectroscopy of polyiodides, see: Deplano

et al. (1999). For pyridine–pyridine interactions, see: Ninković

et al. (2012); Berl et al. (2000); Janiak (2000). For related

poliodides, see: van Megen & Reiss (2012); Reiss & van

Megen (2012a,b); Meyer et al. (2010); Reiss & Engel (2002,

2004). For the elemental analysis of polyiodides, see: Reiss &

van Megen (2012b); Egli (1969).

Experimental

Crystal data

C5H7N2
+
�I3
�

Mr = 475.83
Triclinic, P1
a = 8.0446 (4) Å
b = 8.9973 (5) Å
c = 9.1464 (4) Å
� = 117.805 (6)�

� = 90.939 (4)�

� = 109.640 (5)�

V = 539.46 (6) Å3

Z = 2
Mo K� radiation
� = 8.64 mm�1

T = 100 K
0.43 � 0.41 � 0.04 mm

Data collection

Oxford Diffraction Xcalibur Eos
diffractometer

Absorption correction: analytical
[CrysAlis PRO (Oxford
Diffraction, 2009) based on
expressions derived by Clark &

Reid (1995)]
Tmin = 0.083, Tmax = 0.698

5668 measured reflections
2186 independent reflections
2078 reflections with I > 2�(I)
Rint = 0.021

Refinement

R[F 2 > 2�(F 2)] = 0.018
wR(F 2) = 0.041
S = 1.01
2186 reflections
117 parameters
2 restraints

H atoms treated by a mixture of
independent and constrained
refinement

��max = 0.99 e Å�3

��min = �0.59 e Å�3

Table 1
Hydrogen-bond geometry (Å, �).

D—H� � �A D—H H� � �A D� � �A D—H� � �A

N1—H11� � �I1 0.85 (1) 2.99 (3) 3.698 (3) 142 (4)
N1—H12� � �I3i 0.85 (1) 2.89 (2) 3.709 (3) 164 (4)
N2—H2� � �I1 0.83 (4) 2.97 (5) 3.702 (3) 147 (4)

Symmetry code: (i) x; yþ 1; z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell

refinement: CrysAlis PRO; data reduction: CrysAlis PRO;

program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008);

program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008);

molecular graphics: DIAMOND (Brandenburg, 2012); software used

to prepare material for publication: publCIF (Westrip, 2010).
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2-Aminopyridin-1-ium triiodide

Guido J. Reiss and Peer B. Leske

S1. Comment 

Aminopyridines are of general interest as they show biological activity (Bolliger et al., 2011). Especially the 

monoprotonated cations are able to inactivate K+ channels reversibly (Muñoz-Caro & Niño, 2002). Another field of 

research related to 2-aminopyridinium salts is focused on their nonlinear optical properties (Srinivasan & Priolkar, 2013; 

Shkir, et al., 2012; Periyasamy et al., 2007). There are more than one hundred mono-protonated 2-aminopyridin-1-ium 

cations (apyH+) listed in the Cambridge Structural Database. Common to all is the protonation at the ring-nitrogen atom. 

Moreover, a short exocyclic C—N bond is typically for this cation which represents the so-called imino-form (Scheme 

1). The electronic consequences of the mono-protonation of 2-Aminopyridine (Chai et al., 2009; Testa & Wild, 1981) and 

the electronic structure of the resulting apyH+ monocation (Chapkanov, 2010) seem to be well understood. This 

contribution is part of our ongoing general interest in the hydrogen bonding of polyiodide salts (Reiss & Engel, 2002; 

Reiss & Engel, 2004; Meyer et al., 2010). This applies in particular to the structural chemistry of aromatic nitrogen-

containing polyiodide salts (Reiss & van Megen, 2012a).

The asymmetric unit of the title structure consists of one 2-aminopyridin-1-ium cation and one I3
- anion both located in 

general positions (Fig. 1). The geometric parameters of the apyH+ cation are in accord with the imino-form of a 

protonated 2-aminopyridine. The C–C and C–N bond lengths within the ring show C–N distances of 1.353 (5) and 

1.354 (5) Å and C—C bond lengths ranging from 1.355 (5) to 1.411 (5) Å. The exocyclic C–N bond length is with 

1.328 (5) Å very short, thus in the expected range for the imino-form of a protonated aminopyridine. Bond valence 

calculations for the apyH+ cation were performed using Brown's empirical method (Brown, 2009). The three different C–

N bond lengths correspond to bond orders of 1.27 to 1.36, whereas the bond orders of the C–C bonds vary between 1.42 

and 1.65 (Scheme 1). The geometric parameters of the triiodide anion are also in the typical range for a hydrogen bonded 

triiodide anion (e.g. van Megen & Reiss, 2012) with bond lengths of 2.8966 (3) and 2.9389 (3) Å and a bond angle of 

176.02 (1)°. The Raman spectrum shows two intense signals at 126 and 115 cm-1 and a medium strong signal at 73 cm-1 

which all are in excellent accord with the geometric parameters of the triiodide anion of the title structure and literature 

known examples (Deplano et al., 1999). The Raman and the infrared spectrum show a vast number of bands from 4000 to 

400 cm-1 which are in the expected ranges for the apyH+ monocation (Çırak, 2011; Fig. 2).

Cations and anions are connected by N–H ··· I hydrogen bonds. Each cation donates three un-bifurcated hydrogen bonds 

by the three hydrogen atoms attached to nitrogen atoms to two adjacent triiodide anions (Fig. 1). By these connections 

chains along the b direction are formed (Fig. 3). The hydrogen bonded chains are twisted pairwise to rectangular rods. 

These double chains (rods) (Fig. 3 and 4) are connected to adjacent ones by pyridine-pyridine interactions which are 

arranged in parallel with a plane to plane distance of 3.423 Å. This value is in excellent agreement with the results of ab 

initio calculations reported recently (Ninković et al., 2012). In general, π-π interactions of pyridine moieties may play an 

important role in the biological system (Berl et al., 2000) and are of significant interest in the structural chemistry of 

metal complexes with aromatic nitrogen-containing ligands (Janiak, 2000).
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S2. Experimental 

2-Aminopyridine (0.16 g; 1.7 mmol) was dissolved in 10 ml concentrated hydroiodic acid yielding a brown mixture. This 

mixture was heated to 90 °C and then slowly cooled to room temperature. Within 12 h needle-shaped, orange crystals 

grew from this solution. Elemental analysis (C5H7N2I3): calcd., %: C, 12.62; H, 1.48; N, 5.89; I, 80.01. Found, %: C, 

12.07; H, 1.45; N, 5.60; I, 79.44. For details on the elemental analytical methods used, see: Reiss & van Megen (2012b); 

Egli (1969).

S3. Refinement 

The coordinates of all hydrogen atoms were refined. The N-H distances were restrained to 0.85 (1) Å. It was possible to 

introduce individual Uiso values for the hydrogen atoms attached to nitrogen atoms, whereas for carbon bound hydrogen 

atoms Uiso values had to be set to 1.2Ueq(C).

Figure 1

Showing the asymmetric unit of the title structure (Displacement ellipsoids are drawn at the 50% probability level). 
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Figure 2

Shows the infrared spectrum (upper part) and Raman spectrum (lower part) of the title compound. 
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Figure 3

Pairwise twisted (green/violet and red/blue) hydrogen bonded chains run along [010]. 

Figure 4

Showing the packing of rectangular rods constructed by pairwise twisted chains. π-π interactions are visualized by black 

lines connecting the centres of neighbouring rings. 

2-Aminopyridin-1-ium triiodide 

Crystal data 

C5H7N2
+·I3

−

Mr = 475.83
Triclinic, P1
a = 8.0446 (4) Å
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b = 8.9973 (5) Å
c = 9.1464 (4) Å
α = 117.805 (6)°
β = 90.939 (4)°
γ = 109.640 (5)°
V = 539.46 (6) Å3

Z = 2
F(000) = 420

Dx = 2.929 Mg m−3

Mo Kα radiation, λ = 0.71073 Å
Cell parameters from 6254 reflections
θ = 3.1–32.6°
µ = 8.64 mm−1

T = 100 K
Plate, orange
0.43 × 0.41 × 0.04 mm

Data collection 

Oxford Diffraction Xcalibur Eos 
diffractometer

Radiation source: Sealed tube X-ray Source
Equatorial mounted graphite monochromator
Detector resolution: 16.2711 pixels mm-1

ω scans
Absorption correction: analytical 

[CrysAlis PRO (Oxford Diffraction, 2009) 
based on expressions derived by Clark & Reid 
(1995)]

Tmin = 0.083, Tmax = 0.698
5668 measured reflections
2186 independent reflections
2078 reflections with I > 2σ(I)
Rint = 0.021
θmax = 26.3°, θmin = 3.1°
h = −10→9
k = −11→11
l = −11→11

Refinement 

Refinement on F2

Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.018
wR(F2) = 0.041
S = 1.01
2186 reflections
117 parameters
2 restraints
Hydrogen site location: difference Fourier map

H atoms treated by a mixture of independent 
and constrained refinement

w = 1/[σ2(Fo
2) + (0.015P)2 + 1.5P] 

where P = (Fo
2 + 2Fc

2)/3
(Δ/σ)max = 0.001
Δρmax = 0.99 e Å−3

Δρmin = −0.59 e Å−3

Extinction correction: SHELXL, 
Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

Extinction coefficient: 0.0075 (2)

Special details 

Experimental. Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived 
by Clark & Reid (1995).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full 
covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and 
torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. 
An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 

x y z Uiso*/Ueq

I1 0.09076 (3) 0.38499 (3) 0.61148 (3) 0.01704 (8)
I2 0.19010 (3) 0.35305 (3) 0.90314 (3) 0.01422 (7)
I3 0.26150 (3) 0.30976 (3) 1.18942 (3) 0.01955 (8)
N1 0.2469 (4) 0.8865 (5) 0.8153 (4) 0.0250 (7)
H11 0.162 (4) 0.782 (3) 0.774 (5) 0.031 (12)*
H12 0.236 (6) 0.968 (5) 0.907 (3) 0.037 (13)*
N2 0.4056 (4) 0.7899 (4) 0.6047 (4) 0.0182 (6)
H2 0.325 (6) 0.686 (6) 0.561 (5) 0.026 (12)*
C1 0.3907 (4) 0.9236 (5) 0.7495 (4) 0.0166 (7)
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C3 0.5493 (5) 0.8151 (5) 0.5310 (5) 0.0186 (7)
H3 0.547 (5) 0.712 (6) 0.435 (5) 0.022*
C4 0.6862 (5) 0.9812 (5) 0.5996 (5) 0.0217 (8)
H4 0.783 (6) 0.990 (6) 0.549 (5) 0.026*
C5 0.6744 (5) 1.1248 (5) 0.7472 (5) 0.0218 (8)
H5 0.763 (6) 1.249 (6) 0.799 (5) 0.026 (11)*
C6 0.5316 (5) 1.0977 (5) 0.8221 (5) 0.0192 (7)
H6 0.520 (5) 1.191 (6) 0.915 (5) 0.023*

Atomic displacement parameters (Å2) 

U11 U22 U33 U12 U13 U23

I1 0.01701 (12) 0.01880 (13) 0.01929 (13) 0.00609 (9) 0.00315 (8) 0.01316 (10)
I2 0.01360 (12) 0.01388 (12) 0.01490 (12) 0.00556 (9) 0.00260 (8) 0.00688 (9)
I3 0.02394 (13) 0.02233 (13) 0.01393 (12) 0.01008 (10) 0.00330 (9) 0.00953 (10)
N1 0.0238 (17) 0.0189 (17) 0.0238 (17) 0.0040 (14) 0.0102 (14) 0.0070 (15)
N2 0.0174 (14) 0.0122 (15) 0.0205 (15) 0.0032 (12) 0.0019 (12) 0.0068 (13)
C1 0.0165 (16) 0.0179 (18) 0.0177 (17) 0.0060 (14) 0.0010 (13) 0.0111 (15)
C3 0.0182 (17) 0.0172 (18) 0.0216 (18) 0.0094 (14) 0.0050 (14) 0.0090 (15)
C4 0.0165 (17) 0.0216 (19) 0.028 (2) 0.0087 (15) 0.0073 (15) 0.0126 (17)
C5 0.0162 (17) 0.0159 (18) 0.028 (2) 0.0045 (15) 0.0002 (14) 0.0084 (16)
C6 0.0181 (17) 0.0158 (18) 0.0185 (18) 0.0063 (14) −0.0013 (14) 0.0051 (15)

Geometric parameters (Å, º) 

I1—I2 2.9389 (3) C1—C6 1.411 (5)
I2—I3 2.8966 (3) C3—C4 1.355 (5)
N1—C1 1.328 (5) C3—H3 0.93 (4)
N1—H11 0.849 (10) C4—C5 1.400 (5)
N1—H12 0.847 (10) C4—H4 0.91 (4)
N2—C1 1.353 (5) C5—C6 1.358 (5)
N2—C3 1.354 (5) C5—H5 0.97 (4)
N2—H2 0.83 (4) C6—H6 0.91 (4)

I3—I2—I1 176.017 (9) N2—C3—H3 115 (3)
C1—N1—H11 125 (3) C4—C3—H3 124 (3)
C1—N1—H12 121 (3) C3—C4—C5 118.3 (3)
H11—N1—H12 114 (4) C3—C4—H4 117 (3)
C1—N2—C3 123.2 (3) C5—C4—H4 124 (3)
C1—N2—H2 118 (3) C6—C5—C4 120.9 (3)
C3—N2—H2 118 (3) C6—C5—H5 116 (2)
N1—C1—N2 119.4 (3) C4—C5—H5 123 (3)
N1—C1—C6 123.5 (3) C5—C6—C1 120.0 (3)
N2—C1—C6 117.1 (3) C5—C6—H6 121 (3)
N2—C3—C4 120.4 (3) C1—C6—H6 118 (3)

C3—N2—C1—N1 −178.6 (3) C3—C4—C5—C6 1.5 (6)
C3—N2—C1—C6 1.7 (5) C4—C5—C6—C1 −1.2 (6)
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C1—N2—C3—C4 −1.4 (5) N1—C1—C6—C5 179.9 (4)
N2—C3—C4—C5 −0.3 (6) N2—C1—C6—C5 −0.4 (5)

Hydrogen-bond geometry (Å, º) 

D—H···A D—H H···A D···A D—H···A

N1—H11···I1 0.85 (1) 2.99 (3) 3.698 (3) 142 (4)
N1—H12···I3i 0.85 (1) 2.89 (2) 3.709 (3) 164 (4)
N2—H2···I1 0.83 (4) 2.97 (5) 3.702 (3) 147 (4)

Symmetry code: (i) x, y+1, z.


