[Journal logo]

Volume 69 
Part 7 
Pages o1060-o1061  
July 2013  

Received 30 May 2013
Accepted 3 June 2013
Online 8 June 2013

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.006 Å
R = 0.018
wR = 0.041
Data-to-parameter ratio = 18.7
Details
Open access

2-Aminopyridin-1-ium triiodide

aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
Correspondence e-mail: reissg@hhu.de

The asymmetric unit of the title compound, C5H7N2+.I3-, consists of one 2-aminopyridin-1-ium cation (apyH+) and one triiodide anion, both located in general postions. The apyH+ cation is planar within the experimental uncertainties. The short N-C distance [1.328 (5) Å] of the exocyclic NH2 group is typical for the imino-form of protonated 2-aminopyridines. Consequently, the bond lengths within the six-membered ring vary significantly. The geometric parameters of the triiodide anion are in the typical range, with bond lengths of 2.8966 (3) and 2.9389 (3) Å and a bond angle of 176.02 (1)°. In the crystal, N-H ... I hydrogen bonds connect adjacent ions into screwed chains along the b-axis direction. These chains are twisted pairwise into rectangular rods. The pyridinium moieties of neighbouring rods are arranged parallel to each other with a plane-to-plane distance of 3.423 (5) Å.

Related literature

For the biological activity of aminopyridines, see: Bolliger et al. (2011[Bolliger, J. L., Oberholzer, M. & Frech, C. M. (2011). Adv. Synth. Catal. 353, 945-954.]); Muñoz-Caro & Niño (2002[Muñoz-Caro, C. & Niño, A. (2002). Biophys. Chem. 96, 1-14.]). For aminopyridinium salts with non-linear optical properties, see: Srinivasan & Priolkar (2013[Srinivasan, B. R. & Priolkar, K. R. (2013). Solid State Sci. 20, 15-16.]); Shkir et al. (2012[Shkir, M., Riscob, B. & Bhagavannarayana, G. (2012). Solid State Sci. 14, 773-776.]); Periyasamy et al. (2007[Periyasamy, B. K., Jebas, R. S., Gopalakrishnan, N. & Balasubramanian, T. (2007). Mater. Lett. 61, 4246-4249.]). For the spectroscopy of aminopyridinium salts, see: Çirak et al. (2011[Çirak, Ç., Demir, S., Ucun, F. & Çubuk, O. (2011). Spectrochim. Acta Part A, 79, 529-532.]). For bond-order calculations, see: Brown (2009[Brown, I. D. (2009). Chem. Rev. 109, 6858-6919.]). For the protonation and electronic structure of 2 amiopyridin-1-ium cations, see: Chapkanov (2010[Chapkanov, A. G. (2010). Struct. Chem. 21, 29-35.]); Chai et al. (2009[Chai, S., Zhao, G.-J., Song, P., Yang, S.-Q., Liu, J.-Y. & Han, K.-L. (2009). Phys. Chem. Chem. Phys. 11, 4385-4390.]); Testa & Wild (1981[Testa, A. C. & Wild, U. P. (1981). J. Phys. Chem. 85, 2637-2639.]). For the spectroscopy of polyiodides, see: Deplano et al. (1999)[Deplano, P., Ferraro, J. R., Mercuri, M. L. & Trogu, E. F. (1999). Coord. Chem. Rev. 188, 71-95.]. For pyridine-pyridine interactions, see: Ninkovic et al. (2012[Ninkovic, D. B., Janjic, G. V. & Zaric, S. D. (2012). Cryst. Growth Des. 12, 1060-1063.]); Berl et al. (2000[Berl, V., Huc, I., Khoury, R. G., Krische, M. J. & Lehn, J.-M. (2000). Nature, 407, 720-723.]); Janiak (2000[Janiak, C. (2000). Dalton Trans. pp. 3885-3896.]). For related poliodides, see: van Megen & Reiss (2012[Megen, M. van & Reiss, G. J. (2012). Acta Cryst. E68, o1331-o1332.]); Reiss & van Megen (2012a[Reiss, G. J. & van Megen, M. (2012a). Z. Naturforsch. Teil B, 67, 5-10.],b[Reiss, G. J. & van Megen, M. (2012b). Z. Naturforsch. Teil B, 67, 447-451.]); Meyer et al. (2010[Meyer, M. K., Graf, J. & Reiss, G. J. (2010). Z. Naturforsch. Teil B, 65, 1462-1466.]); Reiss & Engel (2002[Reiss, G. J. & Engel, J. S. (2002). CrystEngComm, 4, 155-161.], 2004[Reiss, G. J. & Engel, J. S. (2004). Z. Naturforsch. Teil B, 59, 1114-1117.]). For the elemental analysis of polyiodides, see: Reiss & van Megen (2012b[Reiss, G. J. & van Megen, M. (2012b). Z. Naturforsch. Teil B, 67, 447-451.]); Egli (1969[Egli, R. A. (1969). Z. Anal. Chem. 247, 39-41.]).

[Scheme 1]

Experimental

Crystal data
  • C5H7N2+·I3-

  • Mr = 475.83

  • Triclinic, [P \overline 1]

  • a = 8.0446 (4) Å

  • b = 8.9973 (5) Å

  • c = 9.1464 (4) Å

  • [alpha] = 117.805 (6)°

  • [beta] = 90.939 (4)°

  • [gamma] = 109.640 (5)°

  • V = 539.46 (6) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 8.64 mm-1

  • T = 100 K

  • 0.43 × 0.41 × 0.04 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.083, Tmax = 0.698

  • 5668 measured reflections

  • 2186 independent reflections

  • 2078 reflections with I > 2[sigma](I)

  • Rint = 0.021

Refinement
  • R[F2 > 2[sigma](F2)] = 0.018

  • wR(F2) = 0.041

  • S = 1.01

  • 2186 reflections

  • 117 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.99 e Å-3

  • [Delta][rho]min = -0.59 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N1-H11...I1 0.85 (1) 2.99 (3) 3.698 (3) 142 (4)
N1-H12...I3i 0.85 (1) 2.89 (2) 3.709 (3) 164 (4)
N2-H2...I1 0.83 (4) 2.97 (5) 3.702 (3) 147 (4)
Symmetry code: (i) x, y+1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2012[Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5319 ).


Acknowledgements

We thank E. Hammes and P. Roloff for technical support and V. Breuers for useful discussions. This publication was funded by the German Research Foundation (DFG) and the Heinrich-Heine-Universität Düsseldorf under the funding programme Open Access Publishing.

References

Berl, V., Huc, I., Khoury, R. G., Krische, M. J. & Lehn, J.-M. (2000). Nature, 407, 720-723.  [Web of Science] [PubMed] [ChemPort]
Bolliger, J. L., Oberholzer, M. & Frech, C. M. (2011). Adv. Synth. Catal. 353, 945-954.  [CrossRef] [ChemPort]
Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Brown, I. D. (2009). Chem. Rev. 109, 6858-6919.  [Web of Science] [CrossRef] [PubMed] [ChemPort]
Chai, S., Zhao, G.-J., Song, P., Yang, S.-Q., Liu, J.-Y. & Han, K.-L. (2009). Phys. Chem. Chem. Phys. 11, 4385-4390.  [Web of Science] [CrossRef] [PubMed] [ChemPort]
Chapkanov, A. G. (2010). Struct. Chem. 21, 29-35.  [Web of Science] [CrossRef] [ChemPort]
Çirak, Ç., Demir, S., Ucun, F. & Çubuk, O. (2011). Spectrochim. Acta Part A, 79, 529-532.
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.  [CrossRef] [IUCr Journals]
Deplano, P., Ferraro, J. R., Mercuri, M. L. & Trogu, E. F. (1999). Coord. Chem. Rev. 188, 71-95.  [Web of Science] [CrossRef] [ChemPort]
Egli, R. A. (1969). Z. Anal. Chem. 247, 39-41.  [CrossRef] [ChemPort]
Janiak, C. (2000). Dalton Trans. pp. 3885-3896.
Megen, M. van & Reiss, G. J. (2012). Acta Cryst. E68, o1331-o1332.  [CSD] [CrossRef] [IUCr Journals]
Meyer, M. K., Graf, J. & Reiss, G. J. (2010). Z. Naturforsch. Teil B, 65, 1462-1466.  [ChemPort]
Muñoz-Caro, C. & Niño, A. (2002). Biophys. Chem. 96, 1-14.  [Web of Science] [PubMed]
Ninkovic, D. B., Janjic, G. V. & Zaric, S. D. (2012). Cryst. Growth Des. 12, 1060-1063.
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
Periyasamy, B. K., Jebas, R. S., Gopalakrishnan, N. & Balasubramanian, T. (2007). Mater. Lett. 61, 4246-4249.  [CrossRef] [ChemPort]
Reiss, G. J. & Engel, J. S. (2002). CrystEngComm, 4, 155-161.
Reiss, G. J. & Engel, J. S. (2004). Z. Naturforsch. Teil B, 59, 1114-1117.  [ChemPort]
Reiss, G. J. & van Megen, M. (2012a). Z. Naturforsch. Teil B, 67, 5-10.  [ChemPort]
Reiss, G. J. & van Megen, M. (2012b). Z. Naturforsch. Teil B, 67, 447-451.  [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Shkir, M., Riscob, B. & Bhagavannarayana, G. (2012). Solid State Sci. 14, 773-776.  [Web of Science] [CrossRef] [ChemPort]
Srinivasan, B. R. & Priolkar, K. R. (2013). Solid State Sci. 20, 15-16.  [CrossRef] [ChemPort]
Testa, A. C. & Wild, U. P. (1981). J. Phys. Chem. 85, 2637-2639.  [CrossRef] [ChemPort] [Web of Science]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2013). E69, o1060-o1061   [ doi:10.1107/S1600536813015389 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.