[Journal logo]

Volume 69 
Part 7 
Page o1183  
July 2013  

Received 24 June 2013
Accepted 25 June 2013
Online 29 June 2013

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.003 Å
Disorder in main residue
R = 0.039
wR = 0.097
Data-to-parameter ratio = 18.4
Details
Open access

3-({[Bis(2-methylpropyl)carbamothioyl]amino}carbonyl)benzamide

aDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India,bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
Correspondence e-mail: edward.tiekink@gmail.com

In the title compound, C17H25N3O2S, the terminal and central amide groups are, respectively, twisted and coplanar with the attached benzene ring [O-C-C-C torsion angles = 22.7 (3) and 5.4 (3)°]. In the central part of the molecule, the amide and thioamide residues are approximately perpendicular [C-N-C-S torsion angle = -104.98 (18)°]. Supramolecular layers with a zigzag topology are formed in the crystal packing by N-H...O, N-H...S and C-H...O interactions; these stack along c, being separated by hydrophobic interactions.

Related literature

For the preparation of bipodal acylthiourea derivatives, see: Bourne et al. (2005[Bourne, S. A., Hallale, O. & Koch, K. R. (2005). Cryst. Growth Des. 5, 307-312.]). For a related structure, see: Selvakumaran et al. (2013[Selvakumaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o1184-o1185.]).

[Scheme 1]

Experimental

Crystal data
  • C17H25N3O2S

  • Mr = 335.46

  • Orthorhombic, P 21 21 2

  • a = 13.9870 (4) Å

  • b = 15.7103 (4) Å

  • c = 8.5532 (3) Å

  • V = 1879.48 (10) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.18 mm-1

  • T = 100 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Tmin = 0.930, Tmax = 0.964

  • 6635 measured reflections

  • 4007 independent reflections

  • 3694 reflections with I > 2[sigma](I)

  • Rint = 0.020

Refinement
  • R[F2 > 2[sigma](F2)] = 0.039

  • wR(F2) = 0.097

  • S = 1.00

  • 4007 reflections

  • 218 parameters

  • 30 restraints

  • H-atom parameters constrained

  • [Delta][rho]max = 0.27 e Å-3

  • [Delta][rho]min = -0.24 e Å-3

  • Absolute structure: Flack (1983)[Flack, H. D. (1983). Acta Cryst. A39, 876-881.], 1590 Friedel pairs

  • Flack parameter: -0.03 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N1-H12...O2i 0.88 2.09 2.887 (2) 150
N2-H2...O1ii 0.88 1.97 2.797 (2) 155
N1-H11...S1ii 0.88 2.54 3.3908 (18) 163
C7-H7...O1ii 0.95 2.32 3.210 (2) 155
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+1]; (ii) -x, -y+1, z.

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5326 ).


Acknowledgements

NS thanks the NITT for a Fellowship. The authors also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

References

Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.
Bourne, S. A., Hallale, O. & Koch, K. R. (2005). Cryst. Growth Des. 5, 307-312.  [CSD] [CrossRef] [ChemPort]
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Flack, H. D. (1983). Acta Cryst. A39, 876-881.  [CrossRef] [IUCr Journals]
Selvakumaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o1184-o1185.  [CrossRef] [IUCr Journals]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2013). E69, o1183  [ doi:10.1107/S1600536813017455 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.