[Journal logo]

Volume 69 
Part 7 
Pages o1184-o1185  
July 2013  

Received 25 June 2013
Accepted 25 June 2013
Online 29 June 2013

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.003 Å
R = 0.058
wR = 0.124
Data-to-parameter ratio = 17.3
Details
Open access

3-{[(Dibenzylcarbamothioyl)amino]carbonyl}benzamide

aDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India,bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
Correspondence e-mail: edward.tiekink@gmail.com

Two independent molecules with quite similar conformations, A and B, comprise the asymmetric unit of the title compound, C23H21N3O2S. The terminal amide substituent is coplanar with the attached benzene ring [the O-C-C-C torsion angles are 174.0 (2) (A) and 6.3 (3)° (B)]. In the same way, the central amide group [C-C-C-O = 7.8 (3) (A) and 11.5 (3)° (B)] is approximately coplanar with the ring to which it is attached. A major twist is noted between the amide and adjacent thioamide residues [C-N-C-S = -109.29 (19) (A) and -112.29 (19)° (B)]. In the crystal, supramolecular chains along [100] are formed by N-H...O and N-H...S hydrogen bonding. These are connected into a three-dimensional architecture by C-H...[pi] and [pi]-[pi] interactions [inter-centroid distance = 3.9157 (12) Å].

Related literature

For the preparation of bipodal acylthiourea derivatives, see: Bourne et al. (2005[Bourne, S. A., Hallale, O. & Koch, K. R. (2005). Cryst. Growth Des. 5, 307-312.]). For a related structure, see: Selvakumaran et al. (2013[Selvakumaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o1183.]).

[Scheme 1]

Experimental

Crystal data
  • C23H21N3O2S

  • Mr = 403.49

  • Monoclinic, P 21 /n

  • a = 11.3448 (5) Å

  • b = 18.6100 (8) Å

  • c = 19.3282 (7) Å

  • [beta] = 97.297 (4)°

  • V = 4047.7 (3) Å3

  • Z = 8

  • Mo K[alpha] radiation

  • [mu] = 0.18 mm-1

  • T = 100 K

  • 0.40 × 0.40 × 0.40 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Tmin = 0.827, Tmax = 1.000

  • 41058 measured reflections

  • 9360 independent reflections

  • 6863 reflections with I > 2[sigma](I)

  • Rint = 0.067

Refinement
  • R[F2 > 2[sigma](F2)] = 0.058

  • wR(F2) = 0.124

  • S = 1.03

  • 9360 reflections

  • 541 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.32 e Å-3

  • [Delta][rho]min = -0.29 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1-Cg3 are the centroids of the C25-C30, C34-C39 and C11-C16 benzene rings, respectively.

D-H...A D-H H...A D...A D-H...A
N1-H12...S1i 0.88 (1) 2.60 (1) 3.4103 (19) 155 (2)
N1-H11...S2 0.88 (1) 2.65 (1) 3.5220 (19) 170 (2)
N2-H2...O3 0.87 (1) 2.01 (1) 2.832 (2) 156 (2)
N4-H41...S1 0.88 (1) 2.61 (1) 3.4666 (19) 165 (2)
N4-H42...S2ii 0.88 (1) 2.65 (2) 3.437 (2) 150 (2)
N5-H5...O1 0.87 (1) 2.09 (1) 2.909 (2) 156 (2)
C13-H13...Cg1iii 0.95 2.92 3.614 (3) 130
C17-H17A...Cg2iii 0.99 2.90 3.644 (2) 132
C40-H40A...Cg3iv 0.99 2.86 3.549 (2) 128
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5327 ).


Acknowledgements

NS thanks the NITT for a Fellowship. The authors also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/12).

References

Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.
Bourne, S. A., Hallale, O. & Koch, K. R. (2005). Cryst. Growth Des. 5, 307-312.  [CSD] [CrossRef] [ChemPort]
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.  [CrossRef] [PubMed] [ChemPort]
Selvakumaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o1183.  [CrossRef] [IUCr Journals]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2013). E69, o1184-o1185   [ doi:10.1107/S1600536813017467 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.