Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[(diaquacadmium)- μ-iminodi-acetato- $\left.\kappa^{4} O, N, O^{\prime}: O^{\prime \prime}\right]$

Gang-Hong Pan, Jin-Niu Tang, Zhong-Jing Huang,* Yi-Fan Liao and Bo-Fa Mo

College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China
Correspondence e-mail: pgh1919@163.com

Received 25 May 2013; accepted 20 June 2013

Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.020 \AA$; R factor $=0.047 ; \omega R$ factor $=0.164 ;$ data-to-parameter ratio $=12.0$.

In the title compound, $\left[\mathrm{Cd}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{NO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, the $\mathrm{Cd}^{\mathrm{II}}$ atom exhibits a distorted octahedral coordination geometry, defined by one N atom and three O atoms from two iminodiacetate (IDA) ligands and two water molecules. The tridentate IDA ligand additionally bridges via one of its carboxylate O atoms to another $\mathrm{Cd}^{\mathrm{II}}$ atom, thus forming a zigzag chain along [001]. A three-dimensional network is completed by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Related literature

For background to $\mathrm{Cd}^{\mathrm{II}}$ complexes, see: Brusau et al. (2001). For related structures, see: Su \& Xu (2005); Zhang \& Lu (2004).

Experimental

Crystal data
$\left[\mathrm{Cd}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{NO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
Orthorhombic, Pca $_{1}$ $a=14.6600(3) \AA$

$$
\begin{aligned}
& b=5.4905(2) \AA \\
& c=9.7928(3) \AA \AA^{3} \\
& V=788.23(4) \AA^{3} \\
& Z=4
\end{aligned}
$$

Mo $K \alpha$ radiation $\mu=2.76 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.22 \times 0.17 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.582, T_{\text {max }}=0.666$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
H -atom parameters constrained
$w R\left(F^{2}\right)=0.164$
$S=1.09$
1303 reflections
109 parameters
1 restraint
$\Delta \rho_{\text {max }}=2.05 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.23$ e \AA^{-3}
Absolute structure: Flack (1983), 566 Friedel pairs
Flack parameter: 0.04 (14)

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 1^{\text {i }}$	0.85	1.84	2.685 (15)	176
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{O}^{\text {ii }}$	0.85	2.03	2.880 (15)	176
$\mathrm{O} 6-\mathrm{H} 6 A \cdots \mathrm{O} 2^{\text {iii }}$	0.85	1.81	2.649 (14)	168
$\mathrm{O} 6-\mathrm{H} 6 \mathrm{~B} \cdots \mathrm{O}^{\text {ii }}$	0.85	1.91	2.750 (15)	168
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\text {i }}$	0.91	2.05	2.953 (16)	174

Symmetry codes: (i) $x, y+1, z$; (ii) $-x,-y+1, z-\frac{1}{2}$; (iii) $x-\frac{1}{2},-y, z$.
Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

This work was supported by the Innovation Project of Guangxi University for Nationalities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2628).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Brusau, E. V., Pedregosa, J. C., Narda, G. E., Pozzi, G., Echeverria, G. \& Punte, G. (2001). J. Coord. Chem. 54, 469-480.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Su, J.-R. \& Xu, D.-J. (2005). J. Coord. Chem. 58, 863-868.
Zhang, Q.-Z. \& Lu, C.-Z. (2004). Acta Cryst. E60, m1189-m1190.

supporting information

Acta Cryst. (2013). E69, m416 [https://doi.org/10.1107/S1600536813017121]

catena-Poly[(diaquacadmium)- μ-iminodiacetato- $\left.\kappa^{4} O, N, O^{\prime}: O^{\prime \prime}\right]$

Gang-Hong Pan, Jin-Niu Tang, Zhong-Jing Huang, Yi-Fan Liao and Bo-Fa Mo

S1. Comment

$\mathrm{Cd}(\mathrm{II})$ ion with d^{10} electronic configuration exhibits a wide variety of coordination geometries and modes, which can induce versatile structural topologies (Brusau et al., 2001). A large number of metal-organic compounds based on $\mathrm{Cd}(\mathrm{II})$ have been reported. However, to the best of our knowledge, only the structure of a $\mathrm{Cd}(\mathrm{II})$ complex with benzimidazole and iminodiacetate (IDA) ligands has been reported so far ($\mathrm{Su} \& \mathrm{Xu}, 2005$). We report here the structure of a Cd (II) iminodiacetate coordination polymer.
In the title complex (Fig. 1), the $\mathrm{Cd}^{\text {II }}$ atom exhibits a distorted octahedral coordination geometry defined by one N atom and two atoms from an IDA ligand, one O atom from another IDA and two water molecules. The five membered chelating ring generated by $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1-\mathrm{Cd} 1$ is nearly planar, with a largest deviation of -0.093 (16) from C 2 to the mean plane, while the $\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 1-\mathrm{Cd} 1$ chelating ring shows largest deviations of -0.440 (16) for C 3 and 0.304 (11) for N 1 in the opposite directions from the mean plane. The dihedral angle between the two chelating ring planes is $82.4(3)^{\circ}$. The bond distances of $\mathrm{Cd}-\mathrm{O}$ and $\mathrm{Cd}-\mathrm{N}$ are comparable to those in [(benzimidazole) $)_{3}(\mathrm{IDA}) \mathrm{Cd} .2 \mathrm{H}_{2} \mathrm{O}$] (Su \& Xu, 2005). However, these bond distances are $0.06-0.19 \AA$ longer than the values in a reported $\mathrm{Mn}(\mathrm{II})$ analogs (Zhang \& Lu , 2004). The IDA ligand bridges two $\mathrm{Cd}^{\mathrm{II}}$ atoms, forming a zigzag chain along [001] (Fig. 2). A three-dimensional network is completed by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 3).

S2. Experimental

A mixture of iminodiacetic acid ($0.067 \mathrm{~g}, 0.5 \mathrm{mmol}), \mathrm{CdSO}_{4} .8 \mathrm{H}_{2} \mathrm{O}(0.208 \mathrm{~g}, 1 \mathrm{mmol}), \mathrm{NaOH}(0.040 \mathrm{~g}, 1 \mathrm{mmol})$ and water (15 ml) was sealed in a Teflon-lined stainless steel vessel $\left(25 \mathrm{~cm}^{3}\right)$, and then the vessel was heated at 403 K for 3 days. After the mixture was slowly cooled to room temperature, colorless block-shaped crystals of the title compound were obtained. Analysis, calculated for $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{CdNO}_{6}$: C 17.19 , H 3.25, N 5.01%; found: C 17.16 , H 3.33, N 5.08\%.

S3. Refinement

H atoms bonded to C and N atoms were positioned geometrically and refined as riding atoms, with $\mathrm{C}-\mathrm{H}=0.97$ and $\mathrm{N}-$ $\mathrm{H}=0.91 \AA$ and with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{N}) . \mathrm{H}$ atoms of water molecules were located in a difference Fourier map and refined as riding, with $\mathrm{O}-\mathrm{H}=0.85 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$. The maximum remaining electron density is found $1.13 \AA$ from Cd 1 and the minimum density $1.43 \AA$ from O 2 .

Figure 1
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) $-x,-y,-1 / 2+z$.

Figure 2
Perspective view of the chains in the title compound.

Figure 3
Crystal packing of the title compound, showing intermolecular hydrogen-bonding interactions (dashed lines).
catena-Poly[(diaquacadmium)- μ-iminodiacetato- $\left.\kappa^{4} O, N, O^{\prime}: O^{\prime \prime}\right]$

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{NO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=279.52$
Orthorhombic, $\mathrm{Pca2}_{1}$
Hall symbol: P 2c -2ac
$a=14.6600(3) \AA$
$b=5.4905(2) \AA$
$c=9.7928(3) \AA$
$V=788.23(4) \AA^{3}$
$Z=4$

Data collection

Bruker SMART 1000 CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.582, T_{\max }=0.666$
$F(000)=544$
$D_{\mathrm{x}}=2.355 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1202 reflections
$\theta=2.8-22.1^{\circ}$
$\mu=2.76 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, colorless
$0.22 \times 0.17 \times 0.16 \mathrm{~mm}$

3775 measured reflections
1303 independent reflections
1173 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=-17 \rightarrow 16$
$k=-6 \rightarrow 6$
$l=-9 \rightarrow 11$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.164$
$S=1.09$
1303 reflections
109 parameters
1 restraint
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

> Hydrogen site location: inferred from \quad neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0941 P)^{2}+9.9695 P\right]$
> \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=2.05 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-1.23 \mathrm{e} \AA^{-3}$
> Absolute structure: Flack (1983), 566 Friedel \quad pairs

Absolute structure parameter: 0.04 (14)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Cd1	$0.05597(5)$	$0.13193(15)$	$0.74648(19)$	$0.0292(3)$
O1	$0.1596(8)$	$-0.1730(19)$	$0.7032(11)$	$0.040(3)$
O2	$0.2833(7)$	$-0.3435(19)$	$0.7786(12)$	$0.043(4)$
O3	$0.0546(7)$	$0.1227(18)$	$1.1908(13)$	$0.037(3)$
O4	$0.0357(7)$	$-0.022(2)$	$0.9811(12)$	$0.039(2)$
O5	$0.1075(9)$	$0.406(2)$	$0.5878(11)$	$0.042(3)$
H5A	0.1248	0.5351	0.6279	0.051^{*}
H5B	0.0880	0.4441	0.5090	0.051^{*}
O6	$-0.0422(7)$	$0.4382(19)$	$0.8246(11)$	$0.032^{(2)}$
H6A	-0.0969	0.3891	0.8160	0.039^{*}
H6B	-0.0378	0.5765	0.7861	0.039^{*}
N1	$0.1820(8)$	$0.229(2)$	$0.8812(13)$	$0.027(2)$
H1	0.2099	0.3623	0.8448	0.032^{*}
C1	$0.2288(10)$	$-0.184(3)$	$0.7810(15)$	$0.033(4)$
C2	$0.2468(10)$	$0.026(3)$	$0.8802(17)$	$0.033(3)$
H2A	0.2493	-0.0406	0.9718	0.040^{*}
H2B	0.3067	0.0920	0.8600	0.040^{*}
C3	$0.1468(10)$	$0.294(3)$	$1.0168(15)$	$0.027(3)$
H3A	0.1204	0.4559	1.0135	0.033^{*}
H3B	0.1967	0.2967	1.0818	0.033^{*}
C4	$0.0744(10)$	$0.112(2)$	$1.0644(17)$	$0.027(3)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	$0.0289(5)$	$0.0255(5)$	$0.0333(5)$	$-0.0008(3)$	$-0.0017(7)$	$-0.0014(6)$
O1	$0.035(6)$	$0.032(6)$	$0.054(8)$	$0.005(4)$	$-0.012(5)$	$-0.017(4)$
O2	$0.030(5)$	$0.047(6)$	$0.054(11)$	$0.008(4)$	$-0.004(5)$	$-0.017(5)$
O3	$0.046(7)$	$0.031(6)$	$0.033(6)$	$-0.006(4)$	$0.010(4)$	$0.004(4)$
O4	$0.046(6)$	$0.029(6)$	$0.041(6)$	$-0.013(5)$	$-0.007(5)$	$0.001(5)$
O5	$0.071(9)$	$0.027(6)$	$0.028(6)$	$-0.012(5)$	$-0.008(5)$	$0.002(4)$
O6	$0.043(6)$	$0.020(5)$	$0.034(6)$	$0.000(4)$	$0.003(4)$	$0.001(4)$
N1	$0.032(6)$	$0.021(5)$	$0.029(6)$	$-0.003(5)$	$0.002(5)$	$-0.001(5)$
C1	$0.033(7)$	$0.021(7)$	$0.044(13)$	$-0.010(6)$	$0.001(6)$	$0.009(6)$
C2	$0.029(7)$	$0.027(7)$	$0.043(8)$	$0.003(6)$	$-0.001(6)$	$-0.011(7)$
C3	$0.039(8)$	$0.012(6)$	$0.031(8)$	$-0.005(6)$	$0.006(6)$	$-0.004(5)$
C4	$0.031(7)$	$0.016(7)$	$0.032(7)$	$0.000(5)$	$-0.001(6)$	$0.010(6)$

Geometric parameters ($A,{ }^{\circ}$)

Cd1-O3 ${ }^{\text {i }}$	2.209 (10)	O5-H5B	0.8500
Cd1-O5	2.291 (11)	O6-H6A	0.8501
$\mathrm{Cd} 1-\mathrm{O} 1$	2.300 (11)	O6-H6B	0.8500
$\mathrm{Cd1}-\mathrm{N} 1$	2.333 (12)	N1-C2	1.463 (18)
Cd1-O6	2.342 (10)	N1-C3	1.468 (18)
Cd1-O4	2.466 (12)	N1-H1	0.9100
$\mathrm{O} 1-\mathrm{C} 1$	1.270 (18)	$\mathrm{C} 1-\mathrm{C} 2$	1.53 (2)
$\mathrm{O} 2-\mathrm{C} 1$	1.186 (18)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700
O3-C4	1.27 (2)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9700
$\mathrm{O} 3-\mathrm{Cd1}{ }^{\text {ii }}$	2.209 (10)	C3-C4	1.531 (19)
O4-C4	1.24 (2)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9700
O5-H5A	0.8500	C3-H3B	0.9700
O3 ${ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{O} 5$	119.4 (4)	C2-N1-C3	114.8 (12)
O3 ${ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{O} 1$	88.8 (4)	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{Cd} 1$	109.6 (8)
$\mathrm{O} 5-\mathrm{Cd} 1-\mathrm{O} 1$	97.7 (4)	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{Cd} 1$	106.8 (8)
O3 ${ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{N} 1$	150.0 (4)	C2-N1-H1	108.5
$\mathrm{O} 5-\mathrm{Cd} 1-\mathrm{N} 1$	88.4 (4)	C3-N1-H1	108.5
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 1$	75.4 (4)	Cd1-N1-H1	108.5
O3- ${ }^{\text {i }}$ Cd1-O6	94.8 (4)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	124.1 (14)
O5-Cd1-O6	87.3 (4)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	117.0 (13)
O1-Cd1-O6	171.4 (4)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	118.8 (13)
N1-Cd1-O6	97.9 (4)	N1-C2-C1	117.8 (12)
O3- ${ }^{\text {i }}$ - $1-\mathrm{O} 4$	85.7 (4)	N1-C2-H2A	107.9
O5-Cd1-O4	153.7 (4)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	107.9
O1-Cd1-O4	90.1 (4)	N1-C2-H2B	107.9
N1-Cd1-O4	69.3 (4)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.9
O6-Cd1-O4	82.4 (4)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.2
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Cd} 1$	116.9 (9)	N1-C3-C4	111.1 (12)
$\mathrm{C} 4-\mathrm{O} 3-\mathrm{Cd} 1^{\text {ii }}$	112.2 (10)	N1-C3-H3A	109.4

$\mathrm{C} 4-\mathrm{O} 4-\mathrm{Cd} 1$	$110.8(9)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.4
$\mathrm{Cd} 1-\mathrm{O} 5-\mathrm{H} 5 \mathrm{~A}$	109.5	$\mathrm{~N} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.4
$\mathrm{Cd} 1-\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B}$	131.9	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.4
$\mathrm{H} 5 \mathrm{~A}-\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B}$	108.3	$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	108.0
$\mathrm{Cd} 1-\mathrm{O} 6-\mathrm{H} 6 \mathrm{~A}$	108.7	$\mathrm{O} 4-\mathrm{C} 4-\mathrm{O} 3$	$124.4(14)$
Cd1-O6-H6B	116.8	$\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 3$	$120.4(14)$
H6A-O6-H6B	108.1	$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 3$	$115.0(13)$

Symmetry codes: (i) $-x,-y, z-1 / 2$; (ii) $-x,-y, z+1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O5-H5A $\cdots \mathrm{O}_{1}{ }^{\text {iii }}$	0.85	1.84	2.685 (15)	176
O5-H5B $\cdots \mathrm{O}^{\text {iv }}$	0.85	2.03	2.880 (15)	176
O6-H6 ${ }^{\cdots}{ }^{\text {O }} 2^{v}$	0.85	1.81	2.649 (14)	168
O6- $\mathrm{H} 6 B^{\cdots} \mathrm{O}^{\text {iv }}$	0.85	1.91	2.750 (15)	168
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\text {iii }}$	0.91	2.05	2.953 (16)	174

Symmetry codes: (iii) $x, y+1, z$; (iv) $-x,-y+1, z-1 / 2$; (v) $x-1 / 2,-y, z$.

