supplementary materials


hy2628 scheme

Acta Cryst. (2013). E69, m416    [ doi:10.1107/S1600536813017121 ]

catena-Poly[(diaquacadmium)-[mu]-iminodiacetato-[kappa]4O,N,O':O'']

G.-H. Pan, J.-N. Tang, Z.-J. Huang, Y.-F. Liao and B.-F. Mo

Abstract top

In the title compound, [Cd(C4H5NO4)(H2O)2]n, the CdII atom exhibits a distorted octahedral coordination geometry, defined by one N atom and three O atoms from two iminodiacetate (IDA) ligands and two water molecules. The tridentate IDA ligand additionally bridges via one of its carboxylate O atoms to another CdII atom, thus forming a zigzag chain along [001]. A three-dimensional network is completed by intermolecular O-H...O and N-H...O hydrogen bonds.

Comment top

Cd(II) ion with d10 electronic configuration exhibits a wide variety of coordination geometries and modes, which can induce versatile structural topologies (Brusau et al., 2001). A large number of metal-organic compounds based on Cd(II) have been reported. However, to the best of our knowledge, only the structure of a Cd(II) complex with benzimidazole and iminodiacetate (IDA) ligands has been reported so far (Su & Xu, 2005). We report here the structure of a Cd(II) iminodiacetate coordination polymer.

In the title complex (Fig. 1), the CdII atom exhibits a distorted octahedral coordination geometry defined by one N atom and two atoms from an IDA ligand, one O atom from another IDA and two water molecules. The five membered chelating ring generated by O1—C1—C2—N1—Cd1 is nearly planar, with a largest deviation of -0.093 (16) from C2 to the mean plane, while the O4—C4—C3—N1—Cd1 chelating ring shows largest deviations of -0.440 (16) for C3 and 0.304 (11) for N1 in the opposite directions from the mean plane. The dihedral angle between the two chelating ring planes is 82.4 (3)°. The bond distances of Cd—O and Cd—N are comparable to those in [(benzimidazole)3(IDA)Cd.2H2O] (Su & Xu, 2005). However, these bond distances are 0.06–0.19Å longer than the values in a reported Mn(II) analogs (Zhang & Lu, 2004). The IDA ligand bridges two CdII atoms, forming a zigzag chain along [001] (Fig. 2). A three-dimensional network is completed by intermolecular O—H···O and N—H···O hydrogen bonds (Fig. 3).

Related literature top

For background to CdII complexes, see: Brusau et al. (2001). For related structures, see: Su & Xu (2005); Zhang & Lu (2004).

Experimental top

A mixture of iminodiacetic acid (0.067 g, 0.5 mmol), CdSO4.8H2O (0.208 g, 1 mmol), NaOH (0.040 g, 1 mmol) and water (15 ml) was sealed in a Teflon-lined stainless steel vessel (25 cm3), and then the vessel was heated at 403 K for 3 days. After the mixture was slowly cooled to room temperature, colorless block-shaped crystals of the title compound were obtained. Analysis, calculated for C4H9CdNO6: C 17.19, H 3.25, N 5.01%; found: C 17.16, H 3.33, N 5.08%.

Refinement top

H atoms bonded to C and N atoms were positioned geometrically and refined as riding atoms, with C—H = 0.97 and N—H = 0.91 Å and with Uiso(H) = 1.2Ueq(C, N). H atoms of water molecules were located in a difference Fourier map and refined as riding, with O—H = 0.85 Å and Uiso(H) = 1.2Ueq(O). The maximum remaining electron density is found 1.13 Å from Cd1 and the minimum density 1.43 Å from O2.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) -x, -y, -1/2+z.]
[Figure 2] Fig. 2. Perspective view of the chains in the title compound.
[Figure 3] Fig. 3. Crystal packing of the title compound, showing intermolecular hydrogen-bonding interactions (dashed lines).
catena-Poly[(diaquacadmium)-µ-iminodiacetato-κ4O,N,O':O''] top
Crystal data top
[Cd(C4H5NO4)(H2O)2]F(000) = 544
Mr = 279.52Dx = 2.355 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 1202 reflections
a = 14.6600 (3) Åθ = 2.8–22.1°
b = 5.4905 (2) ŵ = 2.76 mm1
c = 9.7928 (3) ÅT = 296 K
V = 788.23 (4) Å3Block, colorless
Z = 40.22 × 0.17 × 0.16 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
1303 independent reflections
Radiation source: fine-focus sealed tube1173 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1716
Tmin = 0.582, Tmax = 0.666k = 66
3775 measured reflectionsl = 911
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.0941P)2 + 9.9695P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1303 reflectionsΔρmax = 2.05 e Å3
109 parametersΔρmin = 1.23 e Å3
1 restraintAbsolute structure: Flack (1983), 566 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (14)
Crystal data top
[Cd(C4H5NO4)(H2O)2]V = 788.23 (4) Å3
Mr = 279.52Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 14.6600 (3) ŵ = 2.76 mm1
b = 5.4905 (2) ÅT = 296 K
c = 9.7928 (3) Å0.22 × 0.17 × 0.16 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
1303 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1173 reflections with I > 2σ(I)
Tmin = 0.582, Tmax = 0.666Rint = 0.036
3775 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.164Δρmax = 2.05 e Å3
S = 1.09Δρmin = 1.23 e Å3
1303 reflectionsAbsolute structure: Flack (1983), 566 Friedel pairs
109 parametersAbsolute structure parameter: 0.04 (14)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.05597 (5)0.13193 (15)0.74648 (19)0.0292 (3)
O10.1596 (8)0.1730 (19)0.7032 (11)0.040 (3)
O20.2833 (7)0.3435 (19)0.7786 (12)0.043 (4)
O30.0546 (7)0.1227 (18)1.1908 (13)0.037 (3)
O40.0357 (7)0.022 (2)0.9811 (12)0.039 (2)
O50.1075 (9)0.406 (2)0.5878 (11)0.042 (3)
H5A0.12480.53510.62790.051*
H5B0.08800.44410.50900.051*
O60.0422 (7)0.4382 (19)0.8246 (11)0.032 (2)
H6A0.09690.38910.81600.039*
H6B0.03780.57650.78610.039*
N10.1820 (8)0.229 (2)0.8812 (13)0.027 (2)
H10.20990.36230.84480.032*
C10.2288 (10)0.184 (3)0.7810 (15)0.033 (4)
C20.2468 (10)0.026 (3)0.8802 (17)0.033 (3)
H2A0.24930.04060.97180.040*
H2B0.30670.09200.86000.040*
C30.1468 (10)0.294 (3)1.0168 (15)0.027 (3)
H3A0.12040.45591.01350.033*
H3B0.19670.29671.08180.033*
C40.0744 (10)0.112 (2)1.0644 (17)0.027 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0289 (5)0.0255 (5)0.0333 (5)0.0008 (3)0.0017 (7)0.0014 (6)
O10.035 (6)0.032 (6)0.054 (8)0.005 (4)0.012 (5)0.017 (4)
O20.030 (5)0.047 (6)0.054 (11)0.008 (4)0.004 (5)0.017 (5)
O30.046 (7)0.031 (6)0.033 (6)0.006 (4)0.010 (4)0.004 (4)
O40.046 (6)0.029 (6)0.041 (6)0.013 (5)0.007 (5)0.001 (5)
O50.071 (9)0.027 (6)0.028 (6)0.012 (5)0.008 (5)0.002 (4)
O60.043 (6)0.020 (5)0.034 (6)0.000 (4)0.003 (4)0.001 (4)
N10.032 (6)0.021 (5)0.029 (6)0.003 (5)0.002 (5)0.001 (5)
C10.033 (7)0.021 (7)0.044 (13)0.010 (6)0.001 (6)0.009 (6)
C20.029 (7)0.027 (7)0.043 (8)0.003 (6)0.001 (6)0.011 (7)
C30.039 (8)0.012 (6)0.031 (8)0.005 (6)0.006 (6)0.004 (5)
C40.031 (7)0.016 (7)0.032 (7)0.000 (5)0.001 (6)0.010 (6)
Geometric parameters (Å, º) top
Cd1—O3i2.209 (10)O5—H5B0.8500
Cd1—O52.291 (11)O6—H6A0.8501
Cd1—O12.300 (11)O6—H6B0.8500
Cd1—N12.333 (12)N1—C21.463 (18)
Cd1—O62.342 (10)N1—C31.468 (18)
Cd1—O42.466 (12)N1—H10.9100
O1—C11.270 (18)C1—C21.53 (2)
O2—C11.186 (18)C2—H2A0.9700
O3—C41.27 (2)C2—H2B0.9700
O3—Cd1ii2.209 (10)C3—C41.531 (19)
O4—C41.24 (2)C3—H3A0.9700
O5—H5A0.8500C3—H3B0.9700
O3i—Cd1—O5119.4 (4)C2—N1—C3114.8 (12)
O3i—Cd1—O188.8 (4)C2—N1—Cd1109.6 (8)
O5—Cd1—O197.7 (4)C3—N1—Cd1106.8 (8)
O3i—Cd1—N1150.0 (4)C2—N1—H1108.5
O5—Cd1—N188.4 (4)C3—N1—H1108.5
O1—Cd1—N175.4 (4)Cd1—N1—H1108.5
O3i—Cd1—O694.8 (4)O2—C1—O1124.1 (14)
O5—Cd1—O687.3 (4)O2—C1—C2117.0 (13)
O1—Cd1—O6171.4 (4)O1—C1—C2118.8 (13)
N1—Cd1—O697.9 (4)N1—C2—C1117.8 (12)
O3i—Cd1—O485.7 (4)N1—C2—H2A107.9
O5—Cd1—O4153.7 (4)C1—C2—H2A107.9
O1—Cd1—O490.1 (4)N1—C2—H2B107.9
N1—Cd1—O469.3 (4)C1—C2—H2B107.9
O6—Cd1—O482.4 (4)H2A—C2—H2B107.2
C1—O1—Cd1116.9 (9)N1—C3—C4111.1 (12)
C4—O3—Cd1ii112.2 (10)N1—C3—H3A109.4
C4—O4—Cd1110.8 (9)C4—C3—H3A109.4
Cd1—O5—H5A109.5N1—C3—H3B109.4
Cd1—O5—H5B131.9C4—C3—H3B109.4
H5A—O5—H5B108.3H3A—C3—H3B108.0
Cd1—O6—H6A108.7O4—C4—O3124.4 (14)
Cd1—O6—H6B116.8O4—C4—C3120.4 (14)
H6A—O6—H6B108.1O3—C4—C3115.0 (13)
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O1iii0.851.842.685 (15)176
O5—H5B···O6iv0.852.032.880 (15)176
O6—H6A···O2v0.851.812.649 (14)168
O6—H6B···O3iv0.851.912.750 (15)168
N1—H1···O2iii0.912.052.953 (16)174
Symmetry codes: (iii) x, y+1, z; (iv) x, y+1, z1/2; (v) x1/2, y, z.

Experimental details

Crystal data
Chemical formula[Cd(C4H5NO4)(H2O)2]
Mr279.52
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)296
a, b, c (Å)14.6600 (3), 5.4905 (2), 9.7928 (3)
V3)788.23 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.76
Crystal size (mm)0.22 × 0.17 × 0.16
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.582, 0.666
No. of measured, independent and
observed [I > 2σ(I)] reflections
3775, 1303, 1173
Rint0.036
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.164, 1.09
No. of reflections1303
No. of parameters109
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.05, 1.23
Absolute structureFlack (1983), 566 Friedel pairs
Absolute structure parameter0.04 (14)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O1i0.851.842.685 (15)176
O5—H5B···O6ii0.852.032.880 (15)176
O6—H6A···O2iii0.851.812.649 (14)168
O6—H6B···O3ii0.851.912.750 (15)168
N1—H1···O2i0.912.052.953 (16)174
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z1/2; (iii) x1/2, y, z.
Acknowledgements top

This work was supported by the Innovation Project of Guangxi University for Nationalities.

references
References top

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Brusau, E. V., Pedregosa, J. C., Narda, G. E., Pozzi, G., Echeverria, G. & Punte, G. (2001). J. Coord. Chem. 54, 469–480.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Su, J.-R. & Xu, D.-J. (2005). J. Coord. Chem. 58, 863–868.

Zhang, Q.-Z. & Lu, C.-Z. (2004). Acta Cryst. E60, m1189–m1190.