[Journal logo]

Volume 69 
Part 7 
Pages m420-m421  
July 2013  

Received 19 June 2013
Accepted 24 June 2013
Online 29 June 2013

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.003 Å
R = 0.026
wR = 0.058
Data-to-parameter ratio = 11.2
Details
Open access

trans-Diaquabis(pyridazine-3-carboxylato-[kappa]2N2,O)cobalt(II) dihydrate

aDepartamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad de País Vasco UPV/EHU, PO Box 644, E-48080 Bilbao, Spain
Correspondence e-mail: juanma.zorrilla@ehu.es

The title compound, [Co(C5H3N2O2)2(H2O)2]·2H2O, contains a CoII ion on an inversion center, exhibiting an octahedral coordination geometry. The equatorial plane is formed by two trans-related N,O-bidentate pyridazine-3-carboxylate ligands and the axial positions are occupied by two water molecules. The CoII complex molecules are stacked in a column along the a-axis direction by an O-H...N hydrogen bond between the non-coordinating pyridazine N atom and the coordinating water molecule. These columns are further connected into a layer parallel to the ac plane by additional hydrogen bonds involving the coordinating and non-coordinating water molecules, and the non-coordinating carboxylate O atom. The crystal packing is completed by interlayer weak C-H...O interactions.

Related literature

For the isotypic zinc(II) and manganese(II) complexes, see: Gryz et al. (2003[Gryz, M., Starosta, W., Ptasiewicz, H. & Leciejewicz, J. (2003). J. Coord. Chem. 56, 1505-1511.]); Ardiwlnata et al. (1989[Ardiwlnata, E. S., Craig, C. D. & Phillips, D. J. (1989). Inorg. Chim. Acta, 166, 233-238.]). For a related zinc(II) complex which does not contain non-coordinating water molecules, see: Gryz et al. (2004[Gryz, M., Starosta, W. & Leciejewicz, J. (2004). Acta Cryst. E60, m1481-m1483.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C5H3N2O2)2(H2O)2]·2H2O

  • Mr = 377.18

  • Triclinic, [P \overline 1]

  • a = 5.2934 (4) Å

  • b = 7.2817 (8) Å

  • c = 9.6196 (9) Å

  • [alpha] = 79.673 (8)°

  • [beta] = 89.875 (7)°

  • [gamma] = 72.321 (8)°

  • V = 347.01 (6) Å3

  • Z = 1

  • Mo K[alpha] radiation

  • [mu] = 1.29 mm-1

  • T = 100 K

  • 0.09 × 0.07 × 0.05 mm

Data collection
  • Agilent SuperNova diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.907, Tmax = 0.967

  • 2202 measured reflections

  • 1369 independent reflections

  • 1309 reflections with I > 2[sigma](I)

  • Rint = 0.018

Refinement
  • R[F2 > 2[sigma](F2)] = 0.026

  • wR(F2) = 0.058

  • S = 1.08

  • 1369 reflections

  • 122 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.28 e Å-3

  • [Delta][rho]min = -0.31 e Å-3

Table 1
Selected bond lengths (Å)

Co1-O1 2.0689 (13)
Co1-N2 2.1023 (16)
Co1-O1W 2.1199 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O2W-H2WA...O2i 0.83 (2) 1.96 (2) 2.787 (2) 175 (2)
O1W-H1WA...O2W 0.82 (2) 1.92 (2) 2.732 (2) 171 (3)
O2W-H2WB...O2ii 0.83 (2) 2.05 (2) 2.865 (2) 168 (3)
O1W-H1WB...N1iii 0.82 (2) 2.07 (3) 2.862 (2) 164 (3)
C4-H4...O2iv 0.95 2.37 3.188 (2) 145
C6-H6...O1Wv 0.95 2.33 3.264 (3) 166
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+2, -z; (v) x-1, y+1, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5284 ).


Acknowledgements

This work has been supported financially by Eusko Jaurlaritza/Gobierno Vasco (grants IT477-10 and S-PE11UN062) and the Universidad de País Vasco UPV/EHU (UFI11/53). BA thanks EJ/GV for his predoctoral fellowship.

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Ardiwlnata, E. S., Craig, C. D. & Phillips, D. J. (1989). Inorg. Chim. Acta, 166, 233-238.  [CrossRef]
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Gryz, M., Starosta, W. & Leciejewicz, J. (2004). Acta Cryst. E60, m1481-m1483.  [CSD] [CrossRef] [ChemPort] [IUCr Journals]
Gryz, M., Starosta, W., Ptasiewicz, H. & Leciejewicz, J. (2003). J. Coord. Chem. 56, 1505-1511.  [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2013). E69, m420-m421   [ doi:10.1107/S1600536813017340 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.