supplementary materials


is5284 scheme

Acta Cryst. (2013). E69, m420-m421    [ doi:10.1107/S1600536813017340 ]

trans-Diaquabis(pyridazine-3-carboxylato-[kappa]2N2,O)cobalt(II) dihydrate

B. Artetxe, S. Reinoso, L. San Felices, J. Martín-Caballero and J. M. Gutiérrez-Zorrilla

Abstract top

The title compound, [Co(C5H3N2O2)2(H2O)2]·2H2O, contains a CoII ion on an inversion center, exhibiting an octahedral coordination geometry. The equatorial plane is formed by two trans-related N,O-bidentate pyridazine-3-carboxylate ligands and the axial positions are occupied by two water molecules. The CoII complex molecules are stacked in a column along the a-axis direction by an O-H...N hydrogen bond between the non-coordinating pyridazine N atom and the coordinating water molecule. These columns are further connected into a layer parallel to the ac plane by additional hydrogen bonds involving the coordinating and non-coordinating water molecules, and the non-coordinating carboxylate O atom. The crystal packing is completed by interlayer weak C-H...O interactions.

Comment top

The title compound, trans-[Co(C4H3N2O2)2(H2O)2].2H2O, crystallizes in the triclinic crystal system, space group P-1, and it is isostructural with the zinc and manganese complexes previously reported by Gryz et al. (2003) and Ardiwlnata et al. (1989). As expected, the Co—O and Co—N distances (Table 1) are similar to those of the Zn(II) and Mn(II) analogues. Table 2 summarizes the geometrical parameters of the O—H···O and N—H···O hydrogen bonding interactions.

Related literature top

For the isotypic zinc(II) and manganese(II) complexes, see: Gryz et al. (2003); Ardiwlnata et al. (1989). For a related zinc(II) complex which does not contain non-coordinating water molecules, see: Gryz et al. (2004).

Experimental top

To a solution of CoCl2.6H2O (71 mg, 0.3 mmol) in water (15 ml) 3-pyridazine carboxylic acid (74 mg, 0.6 mmol) was added and the resulting solution was stirred for 30 min at 90 °C. Prismatic orange crystals were obtained by slow evaporation after two days.

Refinement top

H atoms of the water molecules were located in a Fourier difference map and refined isotropically with O—H bond lengths restrained to 0.84 (2) Å. All H atoms of the pyridazine ring were positioned geometrically and refined using a riding model with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: OLEX2 (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing atom labelling and 50% probability displacement ellipsoids. [Symmetry code: (i) 1 - x, 1 - y, 1 - z.]
[Figure 2] Fig. 2. Left: View of the crystal packing along the crystallographic a axis. Right: Projection of a layer along the [110] direction (O—H···O and O—H···N hydrogen bonds represented as dotted red lines and C—H···O weak interactions as dotted green lines).
trans-Diaquabis(pyridazine-3-carboxylato-κ2N2,O)cobalt(II) dihydrate top
Crystal data top
[Co(C5H3N2O2)2(H2O)2]·2H2OZ = 1
Mr = 377.18F(000) = 193
Triclinic, P1Dx = 1.805 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.2934 (4) ÅCell parameters from 1404 reflections
b = 7.2817 (8) Åθ = 2.2–27.8°
c = 9.6196 (9) ŵ = 1.29 mm1
α = 79.673 (8)°T = 100 K
β = 89.875 (7)°Prism, orange
γ = 72.321 (8)°0.09 × 0.07 × 0.05 mm
V = 347.01 (6) Å3
Data collection top
Agilent SuperNova Single source at offset
diffractometer
1369 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1309 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.018
Detector resolution: 16.2439 pixels mm-1θmax = 26°, θmin = 2.2°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 87
Tmin = 0.907, Tmax = 0.967l = 1111
2202 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: difference Fourier map
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0165P)2 + 0.2394P]
where P = (Fo2 + 2Fc2)/3
1369 reflections(Δ/σ)max < 0.001
122 parametersΔρmax = 0.28 e Å3
4 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Co(C5H3N2O2)2(H2O)2]·2H2Oγ = 72.321 (8)°
Mr = 377.18V = 347.01 (6) Å3
Triclinic, P1Z = 1
a = 5.2934 (4) ÅMo Kα radiation
b = 7.2817 (8) ŵ = 1.29 mm1
c = 9.6196 (9) ÅT = 100 K
α = 79.673 (8)°0.09 × 0.07 × 0.05 mm
β = 89.875 (7)°
Data collection top
Agilent SuperNova Single source at offset
diffractometer
1369 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1309 reflections with I > 2σ(I)
Tmin = 0.907, Tmax = 0.967Rint = 0.018
2202 measured reflectionsθmax = 26°
Refinement top
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.058Δρmax = 0.28 e Å3
S = 1.08Δρmin = 0.31 e Å3
1369 reflectionsAbsolute structure: ?
122 parametersAbsolute structure parameter: ?
4 restraintsRogers parameter: ?
Special details top

Experimental. IR (cm-1): 3500(s), 3320(s), 3229(s), 3075(s), 1626(s), 1580(m), 1559(s), 1451(w), 1385(w), 1227(w), 1163(w), 1090(w), 1074(w), 1034(w), 988(m), 851(m), 783(m), 721(m), 675(m), 536(w), 440(w).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50.50.50.00870 (12)
O1W0.3333 (3)0.3129 (2)0.41228 (15)0.0114 (3)
N10.0009 (3)0.8482 (2)0.40078 (17)0.0106 (3)
O10.7179 (3)0.52521 (19)0.32270 (14)0.0108 (3)
O20.7178 (3)0.7107 (2)0.11041 (14)0.0134 (3)
N20.2411 (3)0.7466 (2)0.36752 (17)0.0097 (3)
O2W0.2458 (3)0.4748 (2)0.13080 (16)0.0164 (3)
C50.0299 (4)1.0868 (3)0.1892 (2)0.0143 (4)
H50.12681.20740.13060.017*
C70.6162 (4)0.6691 (3)0.2244 (2)0.0105 (4)
C30.3458 (4)0.8063 (3)0.2481 (2)0.0098 (4)
C60.1312 (4)1.0140 (3)0.3137 (2)0.0123 (4)
H60.30221.08650.33750.015*
C40.2144 (4)0.9783 (3)0.1543 (2)0.0130 (4)
H40.29081.01910.06950.016*
H2WA0.086 (3)0.541 (3)0.122 (3)0.029 (7)*
H1WA0.291 (5)0.359 (3)0.3285 (18)0.024 (7)*
H2WB0.281 (5)0.420 (4)0.062 (2)0.032 (8)*
H1WB0.214 (4)0.281 (4)0.454 (3)0.031 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0088 (2)0.0093 (2)0.00666 (19)0.00195 (15)0.00114 (14)0.00030 (14)
O1W0.0119 (7)0.0136 (7)0.0087 (7)0.0048 (6)0.0012 (6)0.0001 (6)
N10.0095 (8)0.0113 (8)0.0114 (8)0.0029 (7)0.0008 (6)0.0036 (7)
O10.0104 (7)0.0111 (7)0.0088 (7)0.0019 (6)0.0010 (5)0.0012 (5)
O20.0161 (7)0.0143 (7)0.0089 (7)0.0045 (6)0.0051 (6)0.0002 (6)
N20.0091 (8)0.0116 (8)0.0096 (8)0.0040 (7)0.0008 (6)0.0035 (7)
O2W0.0148 (8)0.0210 (8)0.0127 (8)0.0029 (7)0.0002 (6)0.0060 (6)
C50.0163 (10)0.0095 (10)0.0146 (11)0.0021 (8)0.0025 (8)0.0009 (8)
C70.0114 (9)0.0104 (9)0.0119 (10)0.0053 (8)0.0002 (8)0.0046 (8)
C30.0103 (9)0.0105 (9)0.0097 (9)0.0037 (8)0.0009 (7)0.0037 (8)
C60.0106 (10)0.0127 (10)0.0138 (10)0.0024 (8)0.0005 (8)0.0049 (8)
C40.0160 (10)0.0129 (10)0.0102 (10)0.0057 (8)0.0012 (8)0.0002 (8)
Geometric parameters (Å, º) top
Co1—O12.0689 (13)O2—C71.249 (2)
Co1—O1i2.0689 (13)N2—C31.334 (2)
Co1—N2i2.1023 (16)O2W—H2WA0.835 (17)
Co1—N22.1023 (16)O2W—H2WB0.824 (17)
Co1—O1W2.1199 (14)C5—C41.372 (3)
Co1—O1Wi2.1199 (14)C5—C61.395 (3)
O1W—H1WA0.819 (16)C5—H50.95
O1W—H1WB0.822 (17)C7—C31.520 (3)
N1—C61.330 (2)C3—C41.391 (3)
N1—N21.341 (2)C6—H60.95
O1—C71.259 (2)C4—H40.95
O1—Co1—O1i180C3—N2—N1121.11 (16)
O1—Co1—N2i101.76 (6)C3—N2—Co1113.96 (13)
O1i—Co1—N2i78.24 (6)N1—N2—Co1124.73 (12)
O1—Co1—N278.24 (6)H2WA—O2W—H2WB108 (3)
O1i—Co1—N2101.76 (6)C4—C5—C6117.74 (18)
N2i—Co1—N2180C4—C5—H5121.1
O1—Co1—O1W89.54 (5)C6—C5—H5121.1
O1i—Co1—O1W90.46 (5)O2—C7—O1126.21 (18)
N2i—Co1—O1W89.58 (6)O2—C7—C3117.09 (17)
N2—Co1—O1W90.42 (6)O1—C7—C3116.69 (16)
O1—Co1—O1Wi90.46 (5)N2—C3—C4122.10 (18)
O1i—Co1—O1Wi89.54 (5)N2—C3—C7114.00 (16)
N2i—Co1—O1Wi90.42 (6)C4—C3—C7123.89 (17)
N2—Co1—O1Wi89.58 (6)N1—C6—C5123.38 (18)
O1W—Co1—O1Wi180.00 (4)N1—C6—H6118.3
Co1—O1W—H1WA109.3 (17)C5—C6—H6118.3
Co1—O1W—H1WB117.4 (18)C5—C4—C3117.37 (18)
H1WA—O1W—H1WB112 (2)C5—C4—H4121.3
C6—N1—N2118.24 (16)C3—C4—H4121.3
C7—O1—Co1116.67 (12)
N2i—Co1—O1—C7176.98 (13)Co1—O1—C7—C30.1 (2)
N2—Co1—O1—C73.02 (13)N1—N2—C3—C41.8 (3)
O1W—Co1—O1—C793.54 (13)Co1—N2—C3—C4173.40 (14)
O1Wi—Co1—O1—C786.46 (13)N1—N2—C3—C7177.51 (15)
C6—N1—N2—C32.1 (3)Co1—N2—C3—C77.27 (19)
C6—N1—N2—Co1172.59 (13)O2—C7—C3—N2175.85 (16)
O1—Co1—N2—C35.73 (12)O1—C7—C3—N25.0 (2)
O1i—Co1—N2—C3174.27 (12)O2—C7—C3—C43.5 (3)
O1W—Co1—N2—C395.18 (13)O1—C7—C3—C4175.72 (17)
O1Wi—Co1—N2—C384.82 (13)N2—N1—C6—C50.4 (3)
O1—Co1—N2—N1179.25 (15)C4—C5—C6—N11.5 (3)
O1i—Co1—N2—N10.75 (15)C6—C5—C4—C31.7 (3)
O1W—Co1—N2—N189.80 (14)N2—C3—C4—C50.2 (3)
O1Wi—Co1—N2—N190.20 (14)C7—C3—C4—C5179.45 (17)
Co1—O1—C7—O2179.04 (15)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WA···O2ii0.83 (2)1.96 (2)2.787 (2)175 (2)
O1W—H1WA···O2W0.82 (2)1.92 (2)2.732 (2)171 (3)
O2W—H2WB···O2iii0.83 (2)2.05 (2)2.865 (2)168 (3)
O1W—H1WB···N1iv0.82 (2)2.07 (3)2.862 (2)164 (3)
C4—H4···O2v0.952.373.188 (2)145
C6—H6···O1Wvi0.952.333.264 (3)166
Symmetry codes: (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x, y+1, z+1; (v) x+1, y+2, z; (vi) x1, y+1, z.

Experimental details

Crystal data
Chemical formula[Co(C5H3N2O2)2(H2O)2]·2H2O
Mr377.18
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.2934 (4), 7.2817 (8), 9.6196 (9)
α, β, γ (°)79.673 (8), 89.875 (7), 72.321 (8)
V3)347.01 (6)
Z1
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.09 × 0.07 × 0.05
Data collection
DiffractometerAgilent SuperNova Single source at offset
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.907, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
2202, 1369, 1309
Rint0.018
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.058, 1.08
No. of reflections1369
No. of parameters122
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.31

Computer programs: CrysAlis PRO (Agilent, 2011), OLEX2 (Dolomanov et al., 2009), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Co1—O12.0689 (13)Co1—O1W2.1199 (14)
Co1—N22.1023 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WA···O2i0.833 (19)1.956 (19)2.787 (2)175.3 (17)
O1W—H1WA···O2W0.819 (18)1.921 (17)2.732 (2)171 (3)
O2W—H2WB···O2ii0.83 (2)2.05 (2)2.865 (2)168 (3)
O1W—H1WB···N1iii0.82 (2)2.07 (3)2.862 (2)164 (3)
C4—H4···O2iv0.952.373.188 (2)145
C6—H6···O1Wv0.952.333.264 (3)166
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x, y+1, z+1; (iv) x+1, y+2, z; (v) x1, y+1, z.
Acknowledgements top

This work has been supported financially by Eusko Jaurlaritza/Gobierno Vasco (grants IT477–10 and S–PE11UN062) and the Universidad de País Vasco UPV/EHU (UFI11/53). BA thanks EJ/GV for his predoctoral fellowship.

references
References top

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Ardiwlnata, E. S., Craig, C. D. & Phillips, D. J. (1989). Inorg. Chim. Acta, 166, 233–238.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Gryz, M., Starosta, W. & Leciejewicz, J. (2004). Acta Cryst. E60, m1481–m1483.

Gryz, M., Starosta, W., Ptasiewicz, H. & Leciejewicz, J. (2003). J. Coord. Chem. 56, 1505–1511.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.