[Journal logo]

Volume 69 
Part 7 
Pages m393-m394  
July 2013  

Received 19 March 2013
Accepted 6 June 2013
Online 15 June 2013

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.013 Å
Disorder in main residue
R = 0.087
wR = 0.232
Data-to-parameter ratio = 16.5
Details
Open access

[mu]3-Acetato-[mu]2-acetato-(dimethylformamide)pentakis([mu]-N,2-dioxidobenzene-1-carboximidato)pentakis(1-methyl-1H-imidazole)pentamanganese(III)manganese(II)-diethyl ether-dimethylformamide-methanol-water (1/1/1/1/0.49)

aDepartment of Chemistry, Shippensburg University, 1871 Old Main Dr., Shippensburg, PA 17257, USA, and bDepartment of Chemistry, Youngstown State University, 1 University Plaza, Youngstown, OH 44555, USA
Correspondence e-mail: cmzaleski@ship.edu

The title compound, [Mn6(C7H4NO3)5(CH3CO2)2(C4H6N2)4.62(C3H7NO)1.38]·(C2H5)2O·C3H7NO·CH3OH·0.49H2O or MnII(OAc)2[15-MCMn(III)N(shi)-5](Me-Im)4.62(DMF)1.38·diethyl ether·DMF·MeOH·0.49H2O (where MC is metallacrown, -OAc is acetate, shi3- is salicylhydroximate, Me-Im is 1-methylimidazole, DMF is N,N-dimethylformamide, and MeOH is methanol), is comprised of five MnIII ions in the metallacrown ring and an MnII ion which is encapsulated in the central cavity. Four of the ring MnIII ions are six-coordinate with distorted octahedral geometries. Two of these MnIII ions have a planar configuration, while the other two MnIII have [Lambda] absolute stereoconfiguration. The fifth MnIII is five-coordinated with distorted square-pyramidal geometry. Four of the ring MnIII ions each bind one 1-methylimidazole, while the final ring MnIII ion binds a DMF solvent molecule in an axial position and located in a trans position is either a Me-Im or a DMF molecule. The occupancy ratio of Me-Im to DMF is 0.62 (2) to 0.38 (2). The central MnII is seven-coordinate with a geometry best described as distorted face-capped trigonal-prismatic. DMF, diethyl ether, MeOH, and water molecules are located in the interstitial voids between the metallacrown molecules. The methanol molecule is positionally disordered [0.51 (1):0.49 (1)] and associated with a partially occupied water molecule [0.49 (1)]. This disorder is also associated with the positional disorder of the diethyl ether molecule [0.51 (1):0.49 (1)].

Related literature

For a general review of metallacrowns, see: Mezei et al. (2007[Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933-5003.]). For related manganese and vanadium metallacrown structures, see: Lah & Pecoraro (1989[Lah, M. S. & Pecoraro, V. L. (1989). J. Am. Chem. Soc. 111, 7258-7259.]) and Pecoraro (1989[Pecoraro, V. L. (1989). Inorg. Chim. Acta. 155, 171-173.]), respectively. For related Mn(II)[15-MCMn(III)N(shi)-5)] structures and synthetic procedures, see: Kessissoglou et al. (1994[Kessissoglou, D. P., Kampf, J. & Pecoraro, V. L. (1994). Polyhedron, 13, 1379-1391.]), Dendrinou-Samara et al. (2001[Dendrinou-Samara, C., Psomas, G., Iordanidis, L., Tangoulis, V. & Kessissoglou, D. P. (2001). Chem. Eur. J. 7, 5041-5051.], 2002[Dendrinou-Samara, C., Alevizopoulou, L., Iordanidis, L., Samaras, E. & Kessissoglou, D. P. (2002). J. Inorg. Biochem. 89, 89-96.], 2005[Dendrinou-Samara, C., Papadopoulos, A. N., Malamatari, D. A., Tarushi, A., Raptopoulou, C. P., Terzis, A., Samaras, E. & Kessissoglou, D. P. (2005). J. Inorg. Biochem. 99, 864-875.]); Emerich et al. (2010[Emerich, B., Smith, M., Zeller, M. & Zaleski, C. M. (2010). J. Chem. Crystallogr. 40, 769-777.]); Tigyer et al. (2011[Tigyer, B. R., Zeller, M. & Zaleski, C. M. (2011). Acta Cryst. E67, m1041-m1042.], 2012[Tigyer, B. R., Zeller, M. & Zaleski, C. M. (2012). Acta Cryst. E68, m1521-m1522.]). For an explanation on how to calculate the s/h ratio, see: Stiefel & Brown (1972[Stiefel, E. I. & Brown, G. F. (1972). Inorg. Chem. 11, 434-436.]). For an explanation on how to calculate bond-valence-sum values, see: Liu & Thorp (1993[Liu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102-4105.]). For an explanation on how to calculate the [tau] asymmetry parameter, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. G. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). For CELL_NOW software, see: Sheldrick (2008b[Sheldrick, G. M. (2008b). CELL_NOW. University of Göttingen, Germany.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn6(C7H4NO3)5(C2H3O2)2(C4H6N2)4.62(C3H7NO)1.38]·C4H10O·C3H7NO·CH4O·0.49H2O

  • Mr = 1866.61

  • Triclinic, [P \overline 1]

  • a = 12.4181 (8) Å

  • b = 17.0108 (11) Å

  • c = 20.6627 (13) Å

  • [alpha] = 102.166 (4)°

  • [beta] = 96.726 (4)°

  • [gamma] = 107.496 (4)°

  • V = 3992.4 (5) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 1.01 mm-1

  • T = 100 K

  • 0.30 × 0.23 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.]) Tmin = 0.544, Tmax = 0.747

  • 56608 measured reflections

  • 18890 independent reflections

  • 13018 reflections with I > 2[sigma](I)

  • Rint = 0.134

Refinement
  • R[F2 > 2[sigma](F2)] = 0.087

  • wR(F2) = 0.232

  • S = 1.04

  • 18890 reflections

  • 1146 parameters

  • 93 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 1.07 e Å-3

  • [Delta][rho]min = -1.08 e Å-3

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]) and SHELXLE Rev600 (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2164 ).


Acknowledgements

This work was funded by the Shippensburg University Foundation (grant No. UGR2012/13-08) to BRT and CMZ. The diffractometer was funded by NSF grant No. 0087210, by Ohio Board of Regents grant No. CAP-491, and by YSU. The authors would like to thank Professor George M. Sheldrick for providing access to the beta version of SHELXL2012 prior to its official release.

References

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. G. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.  [CSD] [CrossRef]
Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Dendrinou-Samara, C., Alevizopoulou, L., Iordanidis, L., Samaras, E. & Kessissoglou, D. P. (2002). J. Inorg. Biochem. 89, 89-96.  [Web of Science] [PubMed] [ChemPort]
Dendrinou-Samara, C., Papadopoulos, A. N., Malamatari, D. A., Tarushi, A., Raptopoulou, C. P., Terzis, A., Samaras, E. & Kessissoglou, D. P. (2005). J. Inorg. Biochem. 99, 864-875.  [Web of Science] [PubMed] [ChemPort]
Dendrinou-Samara, C., Psomas, G., Iordanidis, L., Tangoulis, V. & Kessissoglou, D. P. (2001). Chem. Eur. J. 7, 5041-5051.  [CrossRef] [PubMed] [ChemPort]
Emerich, B., Smith, M., Zeller, M. & Zaleski, C. M. (2010). J. Chem. Crystallogr. 40, 769-777.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.  [Web of Science] [CrossRef] [IUCr Journals]
Kessissoglou, D. P., Kampf, J. & Pecoraro, V. L. (1994). Polyhedron, 13, 1379-1391.  [ChemPort]
Lah, M. S. & Pecoraro, V. L. (1989). J. Am. Chem. Soc. 111, 7258-7259.  [CrossRef] [ChemPort] [Web of Science]
Liu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102-4105.  [CrossRef] [ChemPort] [Web of Science]
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933-5003.  [Web of Science] [CrossRef] [PubMed] [ChemPort]
Pecoraro, V. L. (1989). Inorg. Chim. Acta. 155, 171-173.  [CrossRef] [ChemPort] [Web of Science]
Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Sheldrick, G. M. (2008b). CELL_NOW. University of Göttingen, Germany.
Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.
Stiefel, E. I. & Brown, G. F. (1972). Inorg. Chem. 11, 434-436.  [CrossRef] [ChemPort] [Web of Science]
Tigyer, B. R., Zeller, M. & Zaleski, C. M. (2011). Acta Cryst. E67, m1041-m1042.  [CSD] [CrossRef] [ChemPort] [IUCr Journals]
Tigyer, B. R., Zeller, M. & Zaleski, C. M. (2012). Acta Cryst. E68, m1521-m1522.  [CSD] [CrossRef] [ChemPort] [IUCr Journals]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2013). E69, m393-m394   [ doi:10.1107/S1600536813015857 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.