supplementary materials


jj2168 scheme

Acta Cryst. (2013). E69, o1145-o1146    [ doi:10.1107/S1600536813016759 ]

Bis[1-(2,3-dimethylphenyl)piperazine-1,4-diium] bis(oxonium) cyclohexaphosphate dihydrate

I. Ameur, S. Abid, S. S. Al-Deyab and M. Rzaigui

Abstract top

In the title compound, 2C12H20N22+·2H3O+·P6O186-·2H2O, a protonated water molecule bridges the centrosymmetrical anionic P6O18 ring via O-H...O hydrogen bonds. The centrosymmetric hydrogen-bonded rings formed by four oxonium cations and four phosphate anions can be described by an R48(36) graph-set motif. The ring motifs are connected by hydrogen bonds into inorganic layers perpendicular to [100]. The 1-(2,3-dimethylphenyl)piperazine-1,4-diium cations are located between the layers, compensating their negative charge and establishing N-H...O hydrogen bonds with the O atoms of the anionic framework.

Comment top

The literature reports several cyclohexaphosphates of organic cations and/or inorganic cations (Durif,1995). However, cyclohexaphosphates of mixed cations associating the oxoniumion are still relatively very limited. Up to now, only two examples have been known and structurally characterized (Amri et al., 2008, Marouani et al.,2010). In this work, we report the preparation and the structural investigation of a new organic oxonium cyclohexaphospohate, 2(C12H20N2)2+.2H3O+.P6O186-. 2H2O, (I), where the organic species is the piperazinium group. Piperazine derivatives have wide range of applications in pharmaceuticals as antimalarial (Kaur et al., 2010), anti-tuberculosis (Eswaran et al., 2010), antitumor (Chou et al., 2010), anticancer (Chen et al., 2004) and antiviral (Shingalapur et al., 2009) agents.

The asymmetric unit of (I) includes one-half of the P6O18 ring lying on an inversion center (1/2, 1/2, 0), one 1-(2,3-dimethylphenyl) piperazine-1,4-diium cation, one hydronium cation and one water molecule (Fig.1). As shown in Fig.2, the hydronium cations (OW2) bridge the anionic ring to form 2-D corrugated layers, located at x = 1/2 and parallel to the bc-plane. The result of these interactions is the formation of a 36-membered ring with an R48(36) graph-set motif (Bernstein et al., 1995). The centre of 36-membered ring is situated on a crystallographic centre of symmetry. Inside these layers, the phosphoric rings display a chair conformation with geometrical characteristics that show no significant difference in deviation from those observed in other cyclohexaphosphates having the same internal symmetry -1 (Amri et al., 2009; Abid et al., 2011; Ameur et al., 2013). The anchorage of the water molecule OW1 and the organic cations is made by short and long H-bonds, ensuring the interconnection between layers, and thus giving rise to a three-dimensional network. The benzyl ring (C5—C10) is essentially planar with an r.m.s. deviation of 0.0047 Å and is orientated at an angle of 54.09 (5)° with respect to the piperazine ring (Fig.3). The piperazine (N1–N2/C1–C4) ring adopts a chair conformation [puckering parameters: QT = 0.577 (2) Å, θ = 0.7 (2)° and φ = 326 (12) (Cremer & Pople, 1975)] with atoms N1 and N2 deviating by -0.683 (2) and 0.657 (2) Å from the least-squares plane defined by the remaining atoms in the ring. The interatomic bond lengths (C—C,N—C) and angles in (C—C—C,C—N—C) do not show significant deviation from those reported in a related 1-phenylpiperazine-1,4-diium salt (Ben Gharbia et al., 2005). An extensive network of N—H···O and O—H···O hydrogen-bonding interactions link the components of the structure into a three-dimensional network (Fig. 3).

Related literature top

For background to the chemistry of cyclohexaphosphate, see: Durif (1995); Amri et al. (2008); Marouani et al. (2010). For applications of piperazine derivatives, see: Kaur et al. (2010); Eswaran et al. (2010); Chou et al. (2010); Chen et al.(2004); Shingalapur et al. (2009). For related structures with cyclohexaphosphate rings, see: Abid et al. (2011); Ameur et al. (2013); Amri et al. (2009). For related structures with 1-phenylpiperazine-1,4-diium salts, see: Marouani et al. (2010); Ben Gharbia et al. (2005). For puckering parameters, see: Cremer & Pople (1975). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For the synthesis of the precursor, see: Schülke & Kayser (1985).

Experimental top

Crystals of the title compound were prepared by adding dropwise an ethanolic solution (5 ml) of 1-(2,3)dimethlphenylpiperazine (4 mmol) to an aqueous solution (10 ml) of cyclohexaphosphoric acid (2 mmol). The reaction mixture was stirred at room temperature for few minutes. X-ray quality crystals of the title compound appeared after a few days. The cyclohexaphosphoric acid H6P6O18, was produced from Li6P6O18.6H2O, prepared according to the procedure of Schülke and Kayser (Schülke & Kayser, 1985), through an ion-exchange resin in H-state (Amberlite IR 120).

Refinement top

H1W1, H1W2, H2W1, H2W2 and H3W2 were located by Fourier maps and refined as riding in their as-found relative positions with Uiso(H) = 1.5Ueq(O). All remaining H atoms were placed in their calculated positions and then refined using the riding model with atom-H lengths of 0.93 Å (CH), 0.97 Å (CH2), 0.96 Å (CH3), 0.91 Å (NH) and 0.90 Å (NH3). Uiso were set to 1.2 (CH, CH2), 1.5 (CH3) or 1.20 (NH) times Ueq of the parent atom.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% probability displacement ellipsoids. Dashed lines indicate O—H···O and N—H···O hydrogen bonds.
[Figure 2] Fig. 2. Fig, 2. Projection along the a axis, of an inorganic layer in the structure of (I). The dashed circles highlight the R48(36) centrosymmetric motifs.
[Figure 3] Fig. 3. (a) The three-dimensional network of (I), projected along the aaxis. (b) Relative orientation of the rings aryl and piperazine in the 1-(2,3-Dimethylphenyl)piperazine-1,4-diium cation.
Bis[1-(2,3-dimethylphenyl)piperazine-1,4-diium] bis(oxonium) cyclohexaphosphate dihydrate top
Crystal data top
2C12H20N22+·2H3O+·P6O186·2H2OF(000) = 976
Mr = 932.50Dx = 1.599 Mg m3
Monoclinic, P21/cAg Kα radiation, λ = 0.56085 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.630 (6) Åθ = 9.3–10.5°
b = 14.495 (4) ŵ = 0.20 mm1
c = 17.072 (3) ÅT = 293 K
β = 114.93 (4)°Prism, colourless
V = 1936.6 (15) Å30.60 × 0.40 × 0.10 mm
Z = 2
Data collection top
Nonius MACH-3
diffractometer
5475 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 28.0°, θmin = 2.1°
non–profiled ω scansh = 1414
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
k = 242
Tmin = 0.892, Tmax = 0.981l = 2816
12060 measured reflections2 standard reflections every 120 min
9442 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0763P)2]
where P = (Fo2 + 2Fc2)/3
9442 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.67 e Å3
0 constraints
Crystal data top
2C12H20N22+·2H3O+·P6O186·2H2OV = 1936.6 (15) Å3
Mr = 932.50Z = 2
Monoclinic, P21/cAg Kα radiation, λ = 0.56085 Å
a = 8.630 (6) ŵ = 0.20 mm1
b = 14.495 (4) ÅT = 293 K
c = 17.072 (3) Å0.60 × 0.40 × 0.10 mm
β = 114.93 (4)°
Data collection top
Nonius MACH-3
diffractometer
5475 reflections with I > 2σ(I)
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
Rint = 0.031
Tmin = 0.892, Tmax = 0.981θmax = 28.0°
12060 measured reflections2 standard reflections every 120 min
9442 independent reflections intensity decay: none
Refinement top
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.152Δρmax = 0.87 e Å3
S = 0.99Δρmin = 0.67 e Å3
9442 reflectionsAbsolute structure: ?
253 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.31249 (5)0.34945 (3)0.07303 (3)0.02004 (9)
P20.37416 (6)0.39535 (3)0.10432 (3)0.02228 (10)
P30.69777 (6)0.49655 (3)0.18679 (3)0.02396 (10)
O10.42651 (16)0.30040 (10)0.10364 (9)0.0287 (3)
O20.14736 (17)0.30794 (10)0.08650 (11)0.0345 (3)
O30.2778 (2)0.45146 (10)0.11034 (11)0.0385 (4)
O40.42266 (17)0.36921 (13)0.02683 (9)0.0403 (4)
O50.19648 (16)0.42960 (10)0.07175 (10)0.0321 (3)
O60.4264 (2)0.31760 (10)0.16614 (10)0.0351 (3)
O70.49427 (17)0.48166 (9)0.14480 (10)0.0325 (3)
O80.7354 (2)0.55904 (12)0.26036 (10)0.0448 (4)
O90.7852 (2)0.40717 (10)0.19877 (12)0.0419 (4)
OW11.0380 (3)0.2895 (2)0.25912 (15)0.0936 (10)
H1W10.97120.33080.24740.140*
H2W11.07900.27340.31230.140*
OW20.79099 (19)0.72073 (11)0.31371 (10)0.0372 (3)
H1W20.75810.67060.29120.056*
H2W20.81820.73600.27640.056*
H3W20.71840.75470.32090.056*
C10.8112 (2)0.37054 (13)0.00581 (13)0.0295 (4)
H1A0.69350.38970.01210.035*
H1B0.88240.40740.05540.035*
C20.8290 (3)0.26990 (14)0.03063 (13)0.0302 (4)
H2C0.94840.25230.05320.036*
H2D0.79070.26050.07590.036*
C30.7820 (3)0.22745 (13)0.11665 (13)0.0282 (4)
H3A0.71340.19040.16670.034*
H3B0.90050.20930.09760.034*
C40.7625 (3)0.32817 (13)0.14143 (14)0.0299 (4)
H4A0.80120.33840.18650.036*
H4B0.64290.34540.16400.036*
C50.7366 (2)0.10980 (12)0.02396 (12)0.0258 (3)
C60.6060 (2)0.05226 (13)0.07716 (12)0.0265 (3)
C70.6213 (3)0.04254 (14)0.05737 (14)0.0335 (4)
C80.7617 (3)0.07472 (15)0.01414 (17)0.0421 (5)
H80.77080.13740.02700.051*
C90.8877 (3)0.01554 (16)0.06639 (17)0.0433 (5)
H90.98010.03830.11440.052*
C100.8771 (3)0.07749 (16)0.04755 (15)0.0364 (5)
H100.96230.11780.08210.044*
C110.4528 (3)0.08562 (15)0.15409 (13)0.0354 (4)
H130.44470.15150.15130.053*
H110.35170.05780.15440.053*
H140.46390.06900.20590.053*
C120.4877 (4)0.10878 (16)0.11266 (19)0.0477 (6)
H1220.37700.08660.12100.072*
H1210.50770.16800.08500.072*
H1230.49240.11440.16760.072*
N10.72640 (18)0.20991 (10)0.04534 (10)0.0227 (3)
H10.61500.22730.06490.027*
N20.8629 (2)0.38610 (11)0.06582 (12)0.0298 (3)
H2A0.84760.44590.08130.036*
H2B0.97460.37290.04750.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01473 (16)0.02149 (19)0.0252 (2)0.00054 (15)0.00971 (15)0.00045 (17)
P20.02042 (19)0.02102 (19)0.0271 (2)0.00034 (15)0.01164 (17)0.00057 (17)
P30.02164 (19)0.02002 (19)0.0283 (2)0.00048 (16)0.00867 (17)0.00217 (17)
O10.0217 (6)0.0296 (7)0.0363 (7)0.0055 (5)0.0137 (5)0.0021 (6)
O20.0221 (6)0.0335 (7)0.0522 (9)0.0093 (5)0.0197 (6)0.0100 (7)
O30.0558 (10)0.0228 (6)0.0560 (10)0.0102 (6)0.0420 (8)0.0084 (7)
O40.0196 (6)0.0758 (12)0.0257 (7)0.0018 (7)0.0099 (5)0.0072 (8)
O50.0205 (6)0.0297 (7)0.0475 (8)0.0007 (5)0.0157 (6)0.0001 (6)
O60.0388 (8)0.0270 (7)0.0420 (8)0.0021 (6)0.0195 (7)0.0086 (6)
O70.0224 (6)0.0209 (6)0.0518 (9)0.0013 (5)0.0132 (6)0.0039 (6)
O80.0574 (10)0.0368 (9)0.0331 (8)0.0078 (8)0.0122 (7)0.0075 (7)
O90.0328 (8)0.0290 (7)0.0603 (10)0.0119 (6)0.0160 (7)0.0105 (7)
OW10.0987 (18)0.134 (2)0.0705 (14)0.0923 (17)0.0579 (14)0.0573 (15)
OW20.0349 (7)0.0385 (8)0.0389 (8)0.0028 (6)0.0162 (7)0.0106 (7)
C10.0236 (8)0.0264 (8)0.0393 (10)0.0026 (7)0.0139 (8)0.0055 (8)
C20.0283 (9)0.0289 (9)0.0304 (9)0.0021 (7)0.0093 (7)0.0018 (8)
C30.0316 (9)0.0249 (8)0.0363 (10)0.0015 (7)0.0223 (8)0.0021 (7)
C40.0297 (9)0.0280 (9)0.0369 (10)0.0011 (7)0.0188 (8)0.0048 (8)
C50.0272 (8)0.0216 (8)0.0324 (9)0.0038 (6)0.0164 (7)0.0035 (7)
C60.0323 (9)0.0245 (8)0.0299 (9)0.0023 (7)0.0200 (7)0.0014 (7)
C70.0459 (11)0.0222 (8)0.0442 (11)0.0000 (8)0.0305 (10)0.0008 (8)
C80.0526 (14)0.0252 (9)0.0598 (15)0.0097 (9)0.0346 (12)0.0128 (10)
C90.0426 (12)0.0339 (11)0.0497 (13)0.0126 (9)0.0158 (10)0.0146 (10)
C100.0310 (10)0.0325 (10)0.0413 (11)0.0075 (8)0.0110 (9)0.0076 (9)
C110.0364 (10)0.0329 (10)0.0335 (10)0.0052 (8)0.0115 (8)0.0028 (8)
C120.0568 (15)0.0290 (10)0.0662 (17)0.0098 (10)0.0346 (13)0.0116 (11)
N10.0199 (6)0.0212 (6)0.0289 (7)0.0015 (5)0.0120 (6)0.0014 (6)
N20.0210 (6)0.0226 (7)0.0483 (10)0.0014 (6)0.0170 (7)0.0031 (7)
Geometric parameters (Å, º) top
P1—O21.4729 (16)C3—H3A0.9700
P1—O11.4766 (15)C3—H3B0.9700
P1—O31.5878 (15)C4—N21.476 (3)
P1—O41.5894 (16)C4—H4A0.9700
P2—O61.4785 (15)C4—H4B0.9700
P2—O51.4792 (17)C5—C61.388 (3)
P2—O71.5855 (15)C5—C101.390 (3)
P2—O41.5924 (15)C5—N11.490 (2)
P3—O81.4696 (17)C6—C71.408 (3)
P3—O91.4696 (15)C6—C111.497 (3)
P3—O3i1.5964 (15)C7—C81.389 (3)
P3—O71.6073 (19)C7—C121.491 (3)
O3—P3i1.5964 (15)C8—C91.377 (4)
OW1—H1W10.7950C8—H80.9300
OW1—H2W10.8565C9—C101.380 (3)
OW2—H1W20.8154C9—H90.9300
OW2—H2W20.7977C10—H100.9300
OW2—H3W20.8458C11—H130.9600
C1—N21.485 (3)C11—H110.9600
C1—C21.509 (3)C11—H140.9600
C1—H1A0.9700C12—H1220.9600
C1—H1B0.9700C12—H1210.9600
C2—N11.501 (2)C12—H1230.9600
C2—H2C0.9700N1—H10.9100
C2—H2D0.9700N2—H2A0.9000
C3—N11.506 (2)N2—H2B0.9000
C3—C41.509 (3)
O2—P1—O1119.56 (9)N2—C4—H4B109.6
O2—P1—O3108.13 (9)C3—C4—H4B109.6
O1—P1—O3110.35 (8)H4A—C4—H4B108.1
O2—P1—O4110.06 (9)C6—C5—C10122.63 (18)
O1—P1—O4106.25 (9)C6—C5—N1118.49 (16)
O3—P1—O4100.89 (10)C10—C5—N1118.88 (17)
O6—P2—O5118.69 (9)C5—C6—C7117.46 (18)
O6—P2—O7110.10 (9)C5—C6—C11123.56 (17)
O5—P2—O7106.42 (9)C7—C6—C11118.97 (18)
O6—P2—O4107.69 (10)C8—C7—C6119.8 (2)
O5—P2—O4111.19 (9)C8—C7—C12119.7 (2)
O7—P2—O4101.38 (9)C6—C7—C12120.5 (2)
O8—P3—O9120.58 (11)C9—C8—C7121.2 (2)
O8—P3—O3i110.49 (10)C9—C8—H8119.4
O9—P3—O3i107.03 (9)C7—C8—H8119.4
O8—P3—O7105.68 (10)C8—C9—C10120.0 (2)
O9—P3—O7110.14 (9)C8—C9—H9120.0
O3i—P3—O7101.25 (9)C10—C9—H9120.0
P1—O3—P3i134.42 (10)C9—C10—C5118.8 (2)
P1—O4—P2133.32 (10)C9—C10—H10120.6
P2—O7—P3133.71 (9)C5—C10—H10120.6
H1W1—OW1—H2W1113.9C6—C11—H13109.5
H1W2—OW2—H2W291.8C6—C11—H11109.5
H1W2—OW2—H3W2117.1H13—C11—H11109.5
H2W2—OW2—H3W2116.2C6—C11—H14109.5
N2—C1—C2110.34 (16)H13—C11—H14109.5
N2—C1—H1A109.6H11—C11—H14109.5
C2—C1—H1A109.6C7—C12—H122109.5
N2—C1—H1B109.6C7—C12—H121109.5
C2—C1—H1B109.6H122—C12—H121109.5
H1A—C1—H1B108.1C7—C12—H123109.5
N1—C2—C1111.36 (16)H122—C12—H123109.5
N1—C2—H2C109.4H121—C12—H123109.5
C1—C2—H2C109.4C5—N1—C2113.59 (15)
N1—C2—H2D109.4C5—N1—C3110.88 (14)
C1—C2—H2D109.4C2—N1—C3109.11 (14)
H2C—C2—H2D108.0C5—N1—H1107.7
N1—C3—C4110.72 (15)C2—N1—H1107.7
N1—C3—H3A109.5C3—N1—H1107.7
C4—C3—H3A109.5C4—N2—C1111.35 (15)
N1—C3—H3B109.5C4—N2—H2A109.4
C4—C3—H3B109.5C1—N2—H2A109.4
H3A—C3—H3B108.1C4—N2—H2B109.4
N2—C4—C3110.49 (16)C1—N2—H2B109.4
N2—C4—H4A109.6H2A—N2—H2B108.0
C3—C4—H4A109.6
O2—P1—O3—P3i116.25 (16)C5—C6—C7—C81.2 (3)
O1—P1—O3—P3i16.22 (19)C11—C6—C7—C8179.47 (19)
O4—P1—O3—P3i128.25 (16)C5—C6—C7—C12178.77 (18)
O2—P1—O4—P231.2 (2)C11—C6—C7—C120.6 (3)
O1—P1—O4—P2162.03 (16)C6—C7—C8—C90.2 (3)
O3—P1—O4—P282.82 (18)C12—C7—C8—C9179.7 (2)
O6—P2—O4—P1114.23 (17)C7—C8—C9—C100.8 (4)
O5—P2—O4—P117.4 (2)C8—C9—C10—C50.8 (4)
O7—P2—O4—P1130.16 (17)C6—C5—C10—C90.2 (3)
O6—P2—O7—P353.82 (17)N1—C5—C10—C9178.9 (2)
O5—P2—O7—P3176.32 (13)C6—C5—N1—C2157.24 (16)
O4—P2—O7—P359.98 (16)C10—C5—N1—C223.6 (2)
O8—P3—O7—P2140.97 (14)C6—C5—N1—C379.5 (2)
O9—P3—O7—P29.23 (18)C10—C5—N1—C399.7 (2)
O3i—P3—O7—P2103.78 (15)C1—C2—N1—C5178.79 (15)
N2—C1—C2—N156.9 (2)C1—C2—N1—C357.0 (2)
N1—C3—C4—N258.0 (2)C4—C3—N1—C5176.94 (15)
C10—C5—C6—C71.2 (3)C4—C3—N1—C257.2 (2)
N1—C5—C6—C7177.91 (16)C3—C4—N2—C157.5 (2)
C10—C5—C6—C11179.48 (19)C2—C1—N2—C456.8 (2)
N1—C5—C6—C111.4 (3)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—H1W1···O90.791.842.614 (3)166
OW1—H2W1···O2ii0.861.972.781 (3)159
OW2—H1W2···O80.821.692.487 (2)167
OW2—H2W2···OW1iii0.801.772.503 (3)152
OW2—H3W2···O6iv0.851.642.481 (2)178
N1—H1···O10.911.822.690 (2)160
N2—H2A···O5i0.901.872.714 (2)156
N2—H2B···O2v0.902.102.858 (3)142
N2—H2B···O5v0.902.282.916 (3)127
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x+2, y+1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula2C12H20N22+·2H3O+·P6O186·2H2O
Mr932.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.630 (6), 14.495 (4), 17.072 (3)
β (°) 114.93 (4)
V3)1936.6 (15)
Z2
Radiation typeAg Kα, λ = 0.56085 Å
µ (mm1)0.20
Crystal size (mm)0.60 × 0.40 × 0.10
Data collection
DiffractometerNonius MACH-3
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(Walker & Stuart, 1983)
Tmin, Tmax0.892, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
12060, 9442, 5475
Rint0.031
(sin θ/λ)max1)0.836
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.152, 0.99
No. of reflections9442
No. of parameters253
No. of restraints0
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.67

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—H1W1···O90.791.842.614 (3)166.0
OW1—H2W1···O2i0.861.972.781 (3)158.8
OW2—H1W2···O80.821.692.487 (2)166.8
OW2—H2W2···OW1ii0.801.772.503 (3)151.5
OW2—H3W2···O6iii0.851.642.481 (2)178.2
N1—H1···O10.911.822.690 (2)160.1
N2—H2A···O5iv0.901.872.714 (2)156.3
N2—H2B···O2v0.902.102.858 (3)141.9
N2—H2B···O5v0.902.282.916 (3)127.4
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+1, z; (v) x+1, y, z.
Acknowledgements top

This work was supported by the Tunisian Ministry of H. E. Sc. R. and the Deanship of Scientific Research at King Saud University (research group project No. RGP-VPP-089).

references
References top

Abid, S., Al-Deyab, S. S. & Rzaigui, M. (2011). Acta Cryst. E67, m1549–m1550.

Ameur, I., Abid, S., Al-Deyab, S. S. & Rzaigui, M. (2013). Acta Cryst. E69, m305–m306.

Amri, O., Abid, S. & Rzaigui, M. (2008). Phosphorus Sulfur Silicon Relat. Elem. 183, 1996–2005.

Amri, O., Abid, S. & Rzaigui, M. (2009). Acta Cryst. E65, o654.

Ben Gharbia, I., Kefi, R., Rayes, A. & Ben Nasr, C. (2005). Z. Kristallogr. 220, 333–334.

Bernstein, J., David, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Chen, Y. L., Hung, H. M., Lu, C. M., Li, K. C. & Tzeng, C. C. (2004). Bioorg. Med. Chem. 12, 6539–6546.

Chou, L. C., Tsai, M. T., Hsu, M. H., Wang, S. H., Way, T. D., Huang, C. H., Lin, H. Y., Qian, K., Dong, Y., Lee, K. H., Huang, L. J. & Kuo, S. C. (2010). J. Med. Chem. 53, 8047–8058.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

Durif, A. (1995). In Crystal Chemistry of Condensed Phosphates. New York and London: Plenum Press.

Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.

Eswaran, S., Adhikari, A. V., Chowdhury, I. H., Pal, N. K. & Thomas, K. D. (2010). Eur. J. Med. Chem. 45, 3374–3383.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.

Kaur, K., Jain, M., Reddy, R. P. & Jain, R. (2010). Eur. J. Med. Chem. 45, 3245–3264.

Marouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o2613.

Schülke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem. 531, 167–175.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Shingalapur, R. V., Hosamani, K. M. & Keri, R. S. (2009). Eur. J. Med. Chem. 44, 4244–4248.

Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.