Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

$\mathrm{Bis}\left(\right.$ ethyleneglycolato $-\kappa^{2} \mathrm{O}, \mathrm{O}^{\prime}$)tellurium (IV)

Neil R. Brooks, ${ }^{\text {a }}$ Minxian Wu, ${ }^{\text {b }}$ Luc Van Meervelt, ${ }^{\text {a* }}$ Koen Binnemans ${ }^{\text {a }}$ and Jan Fransaer ${ }^{\text {b }}$

${ }^{\text {a }}$ KU Leuven-Universtiy of Leuven, Department of Chemistry, Celestijnenlaan 200F, B-3001 Leuven, Belgium, and ${ }^{\mathbf{b}}$ KU Leuven-Universtiy of Leuven, Department of Metallurgy and Materials Engineering, Kasteelpark Arenberg 44, B-3001 Leuven, Belgium
Correspondence e-mail: Luc.VanMeervelt@chem.kuleuven.be

Received 5 March 2013; accepted 5 June 2013

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{Te}-\mathrm{O})=0.004 \AA$; disorder in main residue; R factor $=0.034 ; w R$ factor $=0.079$; data-to-parameter ratio $=15.6$.

The title compound, $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{Te}$, crystallized from a solution of Te^{4+} in ethylene glycol. The $\mathrm{Te}^{\mathrm{IV}}$ atom is in a distorted seesaw coordination defined by four O atoms from two different ethyleneglycate ligands. The C atoms of the ethyleneglycate ligands are disorderd over two positions, with population parameters of 50.3 (6) and 49.7 (6)\% indicating a statistical distribution. Due to the possibility to transform the primitive monoclinic unit cell into a metrically orthorhombic C unit cell, the data are twinned and were refined with the twin law $\overline{1} 00$ / $0 \overline{1} 0 / 101$ with the relative scale factor refining to $1.82(4) \%$ for the minor component.

Related literature

For the use of Te^{4+} ethylene glycol solutions in electrodeposition of Te and Te compounds, see: Nguyen et al. (2012); Wu et al. (2013). For crystal structures of related four-coordinate Te^{4+} complexes with oxo ligands, see: Day \& Holmes (1981); Yosef et al. (2007); Annan et al. (1992); Fleischer \& Schollmeyer (2001); Betz et al. (2008); Lindqvist (1967).

Experimental

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{Te}$
$M_{r}=247.70$
Monoclinic, $P 2_{1} / n$
$\beta=102.168(11)^{\circ}$
$V=632.72(12) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
Data collection
Agilent SuperNova (Single source at offset, Eos) diffractometer
Absorption correction: numerical (CrysAlis PRO; Agilent, 2012) $T_{\text {min }}=0.540, T_{\text {max }}=0.710$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034 \quad 96$ parameters
$w R\left(F^{2}\right)=0.079$
$S=1.05$
1501 reflections
$\mu=4.64 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.20 \times 0.10 \times 0.08 \mathrm{~mm}$

2841 measured reflections
1501 independent reflections
1291 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$

H -atom parameters constrained
$\Delta \rho_{\text {max }}=3.93 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.97 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Te} 1-\mathrm{O} 4$	$1.940(3)$	$\mathrm{Te} 1-\mathrm{O} 5$	$2.027(3)$
$\mathrm{Te} 1-\mathrm{O} 8$	$1.942(3)$	$\mathrm{Te} 1-\mathrm{O} 1$	$2.032(4)$

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: $X P$ (Sheldrick, 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

The authors acknowledge financial support by the KU Leuven (projects IDO/05/005 and GOA 08/05), by the FWOFlanders (research community "Ionic Liquids") and by the IWT-Flanders (SBO369 project IWT 80031 "MAPIL") and experimental work performed by Hai P. Nguyen. The authors also thank the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/ 0035.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2224).

References

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Annan, T. A., Ozarowski, A., Tian, Z. \& Tuck, D. G. (1992). J. Chem. Soc. Dalton Trans. pp. 2931-2938.
Betz, R., Stapel, M., Pfister, M., Roessner, F. W., Reichvilser, M. M. \& Klufers, P. (2008). Z. Anorg. Allg. Chem. 634, 2391-2396.

Day, R. O. \& Holmes, R. R. (1981). Inorg. Chem. 20, 3071-3075.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Fleischer, H. \& Schollmeyer, D. (2001). Inorg. Chem. 40, 324-328.
Lindqvist, O. (1967). Acta Chem. Scand. 21, 1473-1483.
Nguyen, H. P., Wu, M., Su, J., Vullers, R. J. M., Vereecken, P. M. \& Fransaer, J. (2012). Electrochim. Acta, 68, 9-17.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Wu, M., Nguyen, H. P., Vullers, R. J. M., Vereecken, P. M., Binnemans, K. \& Fransaer, J. (2013). J. Electrochem. Soc. 160, D196-D201.
Yosef, S., Brodsky, M., Sredni, B., Albeck, A. \& Albeck, M. (2007). ChemMedChem, 2, 1601-1606.

supporting information

Acta Cryst. (2013). E69, o1080 [https://doi.org/10.1107/S1600536813015687]

Bis(ethyleneglycolato- $\kappa^{2} O, O^{\prime}$)tellurium (IV)

Neil R. Brooks, Minxian Wu, Luc Van Meervelt, Koen Binnemans and Jan Fransaer

S1. Comment

Solutions of Te^{4+} in ethylene glycol are interesting for the purposes of electrodeposition of Te and Te compounds (Nguyen et al., 2012, Wu et al., 2013). During such electrodeposition experiments we have noticed a large number of colourless crystals on the walls of the glass flask. We report here the crystal structure of these crystals.
The title compound, $\mathrm{Te}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2}$, crystallized with one molecule in the asymmetric unit. The Te atom is in a distorted seesaw coordination defined by four O atoms from two different ethyleneglycato ligands (Fig. 1, Table 1). The carbon atoms of the ethyleneglycato ligands are disorderd over two positions, with the major component comprising 50.3 (6)\% of the total. The angle between the best planes through atoms $\mathrm{Te} 1-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 4$ and $\mathrm{Te} 1-\mathrm{O} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 8$ is $85.4(3)^{\circ}$. For the second position the angle between the best planes through $\mathrm{Te} 1-\mathrm{O} 1-\mathrm{C} 7^{\prime}-\mathrm{C}^{\prime}-\mathrm{O} 8$ and $\mathrm{Te} 1-\mathrm{O} 4-$ C2'-C3'—O5 is $85.6(3)^{\circ}$.
Crystal structures of seven similar four coordinate Te^{4+} complexes with oxo ligands have previously been reported by Day \& Holmes (1981), Yosef et al. (2007), Annan et al. (1992), Fleischer \& Schollmeyer (2001), Betz et al. (2008) and Lindqvist (1967), all of which have a distorted seesaw geometry of the Te centre. The geometries or the Te-O bond lengths in these structures do not differ remarkably from those in the title compound. The most closely related compound is the octamethyl derivative bis(1,1,2,2-tetramethyleneglycolato- O, O^{\prime})tellurium(IV) (Day \& Holmes, 1981), in which the $\mathrm{Te}-\mathrm{O}$ bond lengths are, within error, the same as in the title compound. The $\mathrm{O}-\mathrm{Te}-\mathrm{O}$ bond angles that define the seesaw are 105.59° and 153.53° compared to $94.83(14)^{\circ}$ and $159.65(13)^{\circ}$ in the title compound. In tetrakis(methoxy)tellurium(IV) (Betz et al., 2008), the $\mathrm{O}-\mathrm{Te}-\mathrm{O}$ bond angles are 89.99° and 171.42°.

S2. Experimental

Equal volumes of a 1 M solution of TeCl_{4} in ethylene glycol and a 4 M solution of AgNO_{3} in ethylene glycol were mixed together, ensuring that AgNO_{3} was in a slight excess. The resulting precipitate of AgCl was removed by filtration. Excess Ag^{+}ions in the remaining solution were removed by electrodeposition on a Pt working electrode at a constant potential of -0.1 V versus Ag and the solution used in electrodeposition experiments (Wu et al., 2013). When the solution was left to stand for a period of two months, a large number of colourless crystals of the title compound slowly appeared on the walls of the glass flask.

S3. Refinement

The H atoms were included using a riding model, with $\mathrm{C}-\mathrm{H}$ distances of $0.99 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The disorder of the ligands was modelled with two atomic positions for each C atom and the relative occupancy of these two positions refined as a least-squares parameter. The population parameters of 50.3 (6) and 49.7 (6)\% indicate a statistical distribution. Constraints were applied to the displacement parameters of the C atoms to keep the respective atoms from the two disorder components the same. The unit-cell dimensions are such that it is possible to transform the primitive
monoclinic unit cell into a metrically orthorhombic C unit cell, however the high $R_{\text {int }}$ for the higher Laue class shows that the Laue symmetry of the data is unequivocally monoclinic. There is however slight twinning due to these metrics and the data were refined with the twin law $\overline{1} 00 / 0 \overline{1} 0 / 101$ with the relative scale factor refining to 1.82 (4)\% for the minor component.. At the end of the refinement there was a residual difference electron density peak of 3.93 e \AA^{-3}, which was located close to the Te atom. Although careful consideration was given to the unit cell determination and the absorption correction, this peak could not be eliminated.

Figure 1
View of the asymmetric unit of $\mathrm{Te}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{2}$ showing the molecular structure and the disorder of the ligands. Solid bonds belong to one disorder component and open bonds to the other component ($\mathrm{Te}-\mathrm{O}$ bonds are common to both components). For emphasis and to avoid confusion it should be noted that the $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$ ligands are disordered and the ligand is not macrocyclic.

Bis(ethyleneglycolato- $\kappa^{2} O, O^{\prime}$)tellurium(IV)

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{Te}$
$M_{r}=247.70$
Monoclinic, $P 2_{1} / n$
$a=6.4838$ (7) A
$b=6.4978$ (8) \AA
$c=15.3633(15) \AA$

$$
\begin{aligned}
& \beta=102.168(11)^{\circ} \\
& V=632.72(12) \AA^{3} \\
& Z=4 \\
& F(000)=464 \\
& D_{\mathrm{x}}=2.600 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA
\end{aligned}
$$

Cell parameters from 1495 reflections
$\theta=2.8-29.0^{\circ}$
$\mu=4.64 \mathrm{~mm}^{-1}$

Data collection

Agilent SuperNova (Single source at offset, Eos) diffractometer
Radiation source: SuperNova (Mo) X-ray Source
Mirror monochromator
Detector resolution: 15.9631 pixels mm^{-1}
ω scans
Absorption correction: numerical
(CrysAlis PRO; Agilent, 2012)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.079$
$S=1.05$
1501 reflections
96 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$T=100 \mathrm{~K}$
Block, colourless
$0.20 \times 0.10 \times 0.08 \mathrm{~mm}$
$T_{\text {min }}=0.540, T_{\text {max }}=0.710$
2841 measured reflections
1501 independent reflections
1291 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=28.9^{\circ}, \theta_{\text {min }}=3.1^{\circ}$
$h=-8 \rightarrow 7$
$k=-8 \rightarrow 8$
$l=-20 \rightarrow 18$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.034 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=3.93$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.97 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$	Occ. (<1)
Te1	$0.47847(4)$	$0.12922(6)$	$0.711596(17)$	$0.00914(12)$	
O1	$0.2476(5)$	$0.3458(6)$	$0.6857(2)$	$0.0152(8)$	
C2	$0.1002(15)$	$0.2905(17)$	$0.6034(6)$	$0.0116(15)$	$0.499(4)$
H2A	0.1543	0.3389	0.5513	0.014^{*}	$0.499(4)$
H2B	-0.0385	0.3561	0.6016	0.014^{*}	$0.499(4)$
C3	$0.0770(15)$	$0.0595(17)$	$0.6007(6)$	$0.0132(15)$	$0.499(4)$
H3A	-0.0115	0.0147	0.6424	0.016^{*}	$0.499(4)$
H3B	0.0080	0.0146	0.5399	0.016^{*}	$0.499(4)$
C2'	$0.3599(14)$	$-0.2166(17)$	$0.5966(6)$	$0.0116(15)$	$0.501(4)$
H2'A $^{\prime}$	0.2925	-0.2444	0.5336	0.014^{*}	$0.501(4)$
H2'B $^{\prime}$	0.3273	-0.3326	0.6332	0.014^{*}	$0.501(4)$
C3' $^{\prime}$	$0.5943(15)$	$-0.1981(18)$	$0.6060(6)$	$0.0132(15)$	$0.501(4)$

H3'A	0.6578	-0.3368	0.6067	0.016^{*}	$0.501(4)$
H3'B	0.6259	-0.1211	0.5548	0.016^{*}	$0.501(4)$
O4	$0.2792(5)$	$-0.0285(6)$	$0.6251(2)$	$0.0114(7)$	
O5	$0.6852(6)$	$-0.0891(6)$	$0.6898(2)$	$0.0139(8)$	
C6	$0.7477(16)$	$-0.0408(18)$	$0.6043(6)$	$0.0136(15)$	$0.499(4)$
H6A	0.6412	-0.0956	0.5538	0.016^{*}	$0.499(4)$
H6B	0.8853	-0.1056	0.6030	0.016^{*}	$0.499(4)$
C7	$0.7640(15)$	$0.1902(16)$	$0.5960(6)$	$0.0101(14)$	$0.499(4)$
H7A	0.8976	0.2397	0.6340	0.012^{*}	$0.499(4)$
H7B	0.7635	0.2280	0.5336	0.012^{*}	$0.499(4)$
C6'	$0.4899(15)$	$0.4712(18)$	$0.5992(6)$	$0.0136(15)$	$0.501(4)$
H6'A	0.5056	0.5106	0.5387	0.016^{*}	$0.501(4)$
H6'B $^{\prime}$	0.5554	0.5796	0.6413	0.016^{*}	$0.501(4)$
C7' $^{\prime}$	$0.2586(15)$	$0.4511(17)$	$0.6011(6)$	$0.0101(14)$	$0.501(4)$
H7'A $^{\prime}$	0.1920	0.5887	0.5987	0.012^{*}	$0.501(4)$
H7'B	0.1843	0.3694	0.5496	0.012^{*}	$0.501(4)$
O8 $^{\text {H }}$	$0.5902(5)$	$0.2822(6)$	$0.6232(2)$	$0.0122(7)$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Te 1	$0.00895(18)$	$0.0106(2)$	$0.00793(17)$	$-0.00114(12)$	$0.00182(13)$	$-0.00028(12)$
O 1	$0.0134(18)$	$0.020(2)$	$0.0122(16)$	$0.0023(16)$	$0.0029(14)$	$-0.0021(16)$
C 2	$0.010(3)$	$0.015(4)$	$0.009(3)$	$0.003(3)$	$0.001(3)$	$0.000(3)$
C 3	$0.011(3)$	$0.015(4)$	$0.012(3)$	$0.003(3)$	$0.000(3)$	$-0.002(3)$
C^{\prime}	$0.010(3)$	$0.015(4)$	$0.009(3)$	$0.003(3)$	$0.001(3)$	$0.000(3)$
C^{\prime}	$0.011(3)$	$0.015(4)$	$0.012(3)$	$0.003(3)$	$0.000(3)$	$-0.002(3)$
O4	$0.0091(16)$	$0.014(2)$	$0.0099(15)$	$-0.0011(15)$	$-0.0006(13)$	$-0.0037(15)$
O5	$0.0164(18)$	$0.012(2)$	$0.0121(16)$	$0.0035(16)$	$0.0014(14)$	$0.0012(15)$
C6	$0.010(3)$	$0.016(4)$	$0.016(3)$	$-0.006(3)$	$0.005(3)$	$-0.006(3)$
C7	$0.009(3)$	$0.009(4)$	$0.013(3)$	$0.001(3)$	$0.005(3)$	$0.002(3)$
C6 $^{\prime}$	$0.010(3)$	$0.016(4)$	$0.016(3)$	$-0.006(3)$	$0.005(3)$	$-0.006(3)$
C7 $^{\prime}$	$0.009(3)$	$0.009(4)$	$0.013(3)$	$0.001(3)$	$0.005(3)$	$0.002(3)$
O8 $^{\prime}$	$0.0137(17)$	$0.011(2)$	$0.0143(16)$	$-0.0001(16)$	$0.0077(14)$	$0.0024(16)$

Geometric parameters $\left(\hat{A},{ }^{\circ}\right)$

$\mathrm{Te} 1-\mathrm{O} 4$	$1.940(3)$	$\mathrm{C} 3^{\prime}-\mathrm{O} 5$	$1.478(10)$
$\mathrm{Te} 1-\mathrm{O} 8$	$1.942(3)$	$\mathrm{C}^{\prime}-\mathrm{H} 3^{\prime} \mathrm{A}$	0.9900
$\mathrm{Te} 1-\mathrm{O} 5$	$2.027(3)$	$\mathrm{C}^{\prime}-\mathrm{H} 3^{\prime} \mathrm{B}$	0.9900
$\mathrm{Te} 1-\mathrm{O} 1$	$2.032(4)$	$\mathrm{O} 5-\mathrm{C} 6$	$1.487(10)$
$\mathrm{O} 1-\mathrm{C} 2$	$1.460(10)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.512(14)$
$\mathrm{O} 1-\mathrm{C} 7^{\prime}$	$1.484(10)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	0.9900
$\mathrm{C} 2-\mathrm{C} 3$	$1.509(15)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	0.9900
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9900	$\mathrm{C} 7-\mathrm{O} 8$	$1.414(9)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9900	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9900
$\mathrm{C} 3-\mathrm{O} 4$	$1.407(10)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	0.9900
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9900	$\mathrm{C} 6^{\prime}-\mathrm{O} 8$	$1.402(12)$

C3-H3B	0.9900
C2'-O4	1.434 (10)
C2'- ${ }^{\prime} 3^{\prime}$	1.500 (12)
C2'-H2'A	0.9900
C2'-H2 ${ }^{\prime}$ B	0.9900
$\mathrm{O} 4-\mathrm{Te} 1-\mathrm{O} 8$	94.84 (14)
$\mathrm{O} 4-\mathrm{Te} 1-\mathrm{O} 5$	83.41 (15)
O8-Te1-O5	83.41 (15)
$\mathrm{O} 4-\mathrm{Te} 1-\mathrm{O} 1$	82.81 (15)
O8-Te1-O1	82.92 (14)
$\mathrm{O} 5-\mathrm{Te} 1-\mathrm{O} 1$	159.66 (13)
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 7^{\prime}$	59.9 (5)
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{Te} 1$	108.7 (5)
C7'-O1-Te1	108.7 (4)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	108.2 (8)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	110.1
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	110.1
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	110.1
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	110.1
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.4
$\mathrm{O} 4-\mathrm{C} 3-\mathrm{C} 2$	108.4 (8)
$\mathrm{O} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	110.0
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	110.0
O4-C3-H3B	110.0
C2-C3-H3B	110.0
H3A-C3-H3B	108.4
$\mathrm{O} 4-\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}$	109.2 (8)
$\mathrm{O} 4-\mathrm{C} 2{ }^{\prime}-\mathrm{H} 2^{\prime} \mathrm{A}$	109.8
C3'- ${ }^{\prime} 2^{\prime}-\mathrm{H} 2^{\prime} \mathrm{A}$	109.8
$\mathrm{O} 4-\mathrm{C} 2^{\prime}-\mathrm{H} 2^{\prime} \mathrm{B}$	109.8
C3'- $3^{\prime} 2^{\prime}-\mathrm{H} 2^{\prime} \mathrm{B}$	109.8
$\mathrm{H} 2^{\prime} \mathrm{A}-\mathrm{C} 2^{\prime}-\mathrm{H} 2^{\prime} \mathrm{B}$	108.3
O5-C3'-C2'	109.5 (7)
O5-C3'-H3'A	109.8
C2'- ${ }^{\prime} 3^{\prime}-\mathrm{H} 3^{\prime} \mathrm{A}$	109.8
O5-C3'- $3^{\prime}{ }^{\prime} \mathrm{B}$	109.8
C2'- ${ }^{\prime} 3^{\prime}-\mathrm{H} 3^{\prime} \mathrm{B}$	109.8
H3'A-C3'-H3'B	108.2
$\mathrm{O} 4-\mathrm{Te} 1-\mathrm{O} 1-\mathrm{C} 2$	-16.1 (5)
$\mathrm{O} 8-\mathrm{Te} 1-\mathrm{O} 1-\mathrm{C} 2$	79.7 (5)
$\mathrm{O} 5-\mathrm{Te} 1-\mathrm{O} 1-\mathrm{C} 2$	31.6 (7)
$\mathrm{O} 4-\mathrm{Te} 1-\mathrm{O} 1-\mathrm{C}^{\prime}$	-79.7 (5)
$\mathrm{O} 8-\mathrm{Te} 1-\mathrm{O} 1-\mathrm{C} 7{ }^{\prime}$	16.1 (5)
O5-Te1-O1-C7'	-32.0 (7)
C7'-O1-C2-C3	138.3 (9)
$\mathrm{Te} 1-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	37.0 (7)

C6'- ${ }^{\prime} 7^{\prime}$	1.511 (12)
C6'-H6'A	0.9900
C6'-H6'B	0.9900
C7'-H7'A	0.9900
C7'-H7'B	0.9900
C3-O4-C2'	130.1 (6)
C3-O4-Te1	114.6 (5)
C2'-O4-Te1	115.2 (4)
C3'-O5-C6	57.7 (6)
C3'-O5-Te1	108.8 (4)
C6-O5-Te1	108.1 (5)
O5-C6-C7	108.7 (7)
O5-C6-H6A	110.0
C7-C6-H6A	110.0
O5-C6-H6B	110.0
C7-C6-H6B	110.0
H6A-C6-H6B	108.3
O8-C7-C6	108.7 (7)
O8-C7-H7A	109.9
C6-C7-H7A	109.9
O8-C7-H7B	109.9
C6-C7-H7B	109.9
H7A-C7-H7B	108.3
O8-C6'- $\mathbf{C 7}^{\prime}$	109.1 (8)
O8-C6'- $\mathbf{H 6}^{\prime} \mathrm{A}$	109.9
C7'-C6'-H6'A	109.9
O8- C^{\prime} - $\mathrm{H}^{\prime}{ }^{\prime} \mathrm{B}$	109.9
C7'-C6'-H6'B	109.9
H6'A - $\mathrm{C}^{\prime}{ }^{\prime}-\mathrm{H}^{\prime} \mathrm{B}$	108.3
O1-C7--C6'	106.7 (7)
O1-C7'-H7'A	110.4
C6'-C7'-H7'A	110.4
O1-C7'- ${ }^{\prime} 7{ }^{\prime} \mathrm{B}$	110.4
C6'- ${ }^{\prime} 7^{\prime}-\mathrm{H}^{\prime} \mathrm{B}$	110.4
H7'A-C7'-H7'B	108.6
C6'-O8-C7	130.3 (6)
C6'-O8-Te1	114.3 (4)
C7-O8-Te1	115.4 (5)
$\mathrm{O} 4-\mathrm{Te} 1-\mathrm{O} 5-\mathrm{C}^{\prime}$	17.1 (5)
$\mathrm{O} 8-\mathrm{Te} 1-\mathrm{O} 5-\mathrm{C} 3^{\prime}$	-78.5 (5)
$\mathrm{O} 1-\mathrm{Te} 1-\mathrm{O} 5-\mathrm{C} 3^{\prime}$	-30.5 (7)
O4-Te1-O5-C6	78.3 (5)
O8-Te1-O5-C6	-17.4 (5)
O1-Te1-O5-C6	30.7 (7)
C3'-O5-C6-C7	138.1 (10)
Te1-O5-C6-C7	36.9 (8)

$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 4$	$-45.4(9)$
$\mathrm{O} 4-\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{O} 5$	$40.2(10)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 4-\mathrm{C} 2^{\prime}$	$-147.6(8)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 4-\mathrm{Te} 1$	$32.9(8)$
$\mathrm{C} 3^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{O} 4-\mathrm{C} 3$	$154.0(8)$
$\mathrm{C} 3^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{O} 4-\mathrm{Te} 1$	$-26.5(8)$
$\mathrm{O} 8-\mathrm{Te} 1-\mathrm{O} 4-\mathrm{C} 3$	$-92.2(5)$
$\mathrm{O} 5-\mathrm{Te} 1-\mathrm{O} 4-\mathrm{C} 3$	$-175.0(5)$
$\mathrm{O} 1-\mathrm{Te} 1-\mathrm{O} 4-\mathrm{C} 3$	$-9.9(5)$
$\mathrm{O} 8-\mathrm{Te} 1-\mathrm{O} 4-\mathrm{C}^{\prime}$	$88.2(5)$
$\mathrm{O} 5-\mathrm{Te} 1-\mathrm{O} 4-\mathrm{C}^{\prime}$	$5.5(5)$
$\mathrm{O} 1-\mathrm{Te} 1-\mathrm{O} 4-\mathrm{C} 2^{\prime}$	$170.5(5)$
$\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{O} 5-\mathrm{C} 6$	$-135.5(11)$
$\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{O} 5-\mathrm{Te} 1$	$-35.5(9)$

$\mathrm{O} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 8$	$-43.0(10)$
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}$	$-138.4(10)$
$\mathrm{Te} 1-\mathrm{O} 1-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}$	$-37.2(8)$
$\mathrm{O} 8-\mathrm{C}^{\prime}-\mathrm{C} 7^{\prime}-\mathrm{O} 1$	$46.5(9)$
$\mathrm{C}^{\prime}-\mathrm{C}^{\prime}-\mathrm{O} 8-\mathrm{C} 7$	$148.3(8)$
$\mathrm{C}^{\prime}-\mathrm{C} 6^{\prime}-\mathrm{O}-\mathrm{Te} 1$	$-34.5(8)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{O}-\mathrm{C} 6^{\prime}$	$-153.6(8)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 8-\mathrm{Te} 1$	$29.2(9)$
$\mathrm{O} 4-\mathrm{Te} 1-\mathrm{O} 8-\mathrm{C}^{\prime}$	$92.7(5)$
$\mathrm{O} 5-\mathrm{Te} 1-\mathrm{O} 8-\mathrm{C}^{\prime}$	$175.5(5)$
$\mathrm{O} 1-\mathrm{Te} 1-\mathrm{O} 8-\mathrm{C}^{\prime}$	$10.6(5)$
$\mathrm{O} 4-\mathrm{Te} 1-\mathrm{O}-\mathrm{C} 7$	$-89.7(5)$
$\mathrm{O} 5-\mathrm{Te} 1-\mathrm{O} 8-\mathrm{C} 7$	$-6.9(5)$
$\mathrm{O} 1-\mathrm{Te} 1-\mathrm{O} 8-\mathrm{C} 7$	$-171.8(5)$

