Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane)sodium iodide-1,1,2,2,tetrafluoro-1,2-diiodoethane (2/3)

Gabriella Cavallo, Pierangelo Metrangolo, Tullio Pilati, Giuseppe Resnati, Maurizio Ursini and Giancarlo Terraneo*

NFMLab, Department of Chemistry, Materials and Chemical Engineering, "Giulio Natta", Politecnico di Milano, Via Mancinelli, 7, I-20131 Milano, Italy Correspondence e-mail: giancarlo.terraneo@polimi.it

Received 15 March 2013; accepted 10 June 2013

Key indicators: single-crystal X-ray study; T = 93 K; mean σ (C–C) = 0.005 Å; disorder in solvent or counterion; R factor = 0.032; wR factor = 0.076; data-to-parameter ratio = 20.2.

The title complex (CX1), $[Na(C_{18}H_{36}N_2O_6)]I \cdot 1.5C_2F_4I_2$, is a three-component adduct containing a [2.2.2]-cryptand, sodium iodide and 1,1,2,2-tetrafluoro-1,2-diiodoethane. The diiodoethane works as a bidentate halogen-bonding (XB) donor, the [2.2.2]-cryptand chelates the sodium cation, and the iodide counter-ion acts as a tridentate XB acceptor. A (6,3) network is formed in which iodide anions are the nodes and halocarbons the sides. The network symmetry is C_{3i} and the $I \cdots I^{-}$ XB distance is 3.4492 (5) Å. This network is strongly deformed and wrinkled. It forms a layer 9.6686 (18) Å high and the inter-layer distance is 4.4889 (10) A. The cations, interacting with each other via weak O···H hydrogen bonds, are confined between two anionic layers and also form a (6.3)net. The structure of CX1 is closely related to that of the KI homologue (CX2). The 1,1,2,2,-tetrafluoro-1,2-diiodoethane molecule is rotationally disordered around the I...I axis, resulting in an 1:1 disorder of the C₂F₄ moiety.

Related literature

For other K2.2.2./salt/haloperfluorocarbon complexes, see: Fox *et al.* (2004); Metrangolo *et al.* (2004); Liantonio *et al.* (2003, 2006).

Z = 12

T = 93 K

Mo $K\alpha$ radiation

 $0.28 \times 0.25 \times 0.03 \text{ mm}$

 $\mu = 3.84 \text{ mm}^{-1}$

Experimental

Crystal data

$$\begin{split} & [\mathrm{Na}(\mathrm{C}_{18}\mathrm{H}_{36}\mathrm{N}_{2}\mathrm{O}_{6})]\mathrm{I}^{-1.5}\mathrm{C}_{2}\mathrm{F}_{4}\mathrm{I}_{2} \\ & M_{r} = 1057.11 \\ & \mathrm{Trigonal}, \ R\bar{3}c \\ & a = 11.634 \ (2) \ \text{\AA} \\ & c = 84.945 \ (15) \ \text{\AA} \\ & V = 9957 \ (4) \ \text{\AA}^{3} \end{split}$$

Data collection

Bruker APEXII CCD
diffractometer47282 measured reflections
2994 independent reflectionsAbsorption correction: multi-scan
(SADABS; Bruker, 2008)
 $T_{\min} = 0.676, T_{\max} = 1.000$ 87282 measured reflections
2604 reflections with $I > 2\sigma(I)$
 $R_{int} = 0.035$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.032 & \mbox{44 restraints} \\ WR(F^2) = 0.076 & \mbox{H-atom parameters constrained} \\ S = 1.07 & \mbox{$\Delta \rho_{\rm max} = 1.64$ e \AA^{-3}} \\ 2994 \mbox{ reflections} & \mbox{$\Delta \rho_{\rm min} = -0.58$ e \AA^{-3}} \\ 148 \mbox{ parameters} & \end{array}$

Table 1

Some parameters $(\mathring{A}, \mathring{A}^3)$ of the anionic layer and of the cation in the structures CX1 and CX2.

	CX1	CX2
Hole side ¹	11.634 (2)	11.7478 (15)
Layer height ²	9.6686 (18)	9.6380 (13)
h^3	4.4889 (10)	4.5343 (7)
V^3	303.79 (7)	312.89 (6)
$M^{+}-O1$	2.460 (2)	2.6650 (12)
$M^{+}-O2$	2.692 (2)	2.7737 (13)
$M^{+}-N1$	2.744 (5)	2.941 (2)
M^+ -N2	3.271 (5)	2.985 (3)

Notes: (1) Distance between the nearest iodide anions on the same side of the anionic layer, equal to the cell parameter a; (2) distance between the planes through the iodide anions on the opposite sides of the anionic layer; (3) h = distance between the nearest planes through iodide anions of contiguous layers. (4) $V = a^2h/2$, volume of the trigonal prism whose vertices are the three iodide anions on a layer and the same faced on the contiguous one.

Table 2

Halogen and hydrogen bonds (Å, $^{\circ}$) in CX1 and CX2.

In CX2, the cell origin and the atom numbering are different, so that atom labels and symmetry code refer only to CX1; for CX2 the reported values refer to the equivalent atoms and values.

$X \cdots Y - C$	CX1 $X \cdots Y$	CX1 C $-X \cdots Y$	CX2 $X \cdots Y$	CX2 C $-X \cdots Y$
$ \begin{array}{c} I2\cdots I1-C7\\I2\cdots I1-C8^{i}\\O1\cdots (H3B-C3)^{ii}\end{array} $	3.4492 (5)	175.99 (17)	3.4492 (5)	176.30 (16)
	3.4492 (5)	168.30 (16)	3.4492 (5)	166.40 (16)
	2.63	147.9	2.60	147.6

Symmetry codes: (i) $\frac{2}{3} - x, \frac{1}{3} - x + y, \frac{5}{6} - z$; (ii) x - y, x, 1 - z.

metal-organic compounds

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2003); program(s) used to refine structure: *SHELXL2012* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXL2012*.

GC, PM, GR and GT acknowledge the Fondazione Cariplo (project 2010–1351) and "5x1000 junior project" for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2225).

References

- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Fox, D. B., Liantonio, R., Metrangolo, P., Pilati, T. & Resnati, G. (2004). J. Fluorine Chem. 125, 271–281.
- Liantonio, R., Metrangolo, P., Meyer, F., Pilati, T., Navarrini, W. & Resnati, G. (2006). *Chem. Commun.* pp. 1819–1821.
- Liantonio, R., Metrangolo, P., Pilati, T. & Resnati, G. (2003). Cryst. Growth Des. 3, 355–361.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Metrangolo, P., Pilati, T. & Resnati, G. (2004). Handbook of Fluorous Chemistry, pp. 507–520. Weinheim: Wiley VCH.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, m387–m388 [https://doi.org/10.1107/S1600536813016085]

(4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane)sodium iodide– 1,1,2,2,tetrafluoro-1,2-diiodoethane (2/3)

Gabriella Cavallo, Pierangelo Metrangolo, Tullio Pilati, Giuseppe Resnati, Maurizio Ursini and Giancarlo Terraneo

S1. Comment

(4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo(8.8.8) hexacosane (K2.2.2) is one of the most popular cryptands in supramolecular chemistry and crystal engineering. Our group has used this [2.2.2] cryptand to generate naked halide anions from their alkali and alkali earth salts and to promote the formation of halogen bonding (XB) with diiodoperfluoroalkanes (DIPFA_n, where n is the alkyl chain length). Different structures were obtained as a function of the cation and of the haloalkane length. For instance, in the complex with BaI₂ and DIPFA₂ the ratios K2.2.2/BaI₂/DIPFA₂ are 1:1:1, iodide anions function as monodentate XB acceptors and form the trimer I···DIPFA₂···I (Fox, et al., 2004). This is probably related to the fact that the iodide anions are hydrogen bonded to a water molecule and the resulting decrease of electron density on the anion may limit the number of XB's it gives rise to. The K2.2.2/BaI₂/DIPFA₈ adduct presents a quite different stoichiometry and interaction pattern (Metrangolo, et al., 2004). Here, the ratios among the three component are 1:1:3 and an infinite comb-like supramolecular anion is formed in which iodide anions in the main chain and in the prongs function as tridentate and bidentate XB acceptors, respectively. Here too the cryptand does not saturate the cation coordination sphere and two methanol molecules are bound to barium. In the $K_{2,2,2}/KI/DIPFA_n$ adducts (n = 2,6 (Liantonio, et al., 2006) and n=4,8 (Liantonio, et al., 2003) the ratios among the three components is 2:2:3. The cryptand completes the coordination sphere of K⁺ cation and no water or alcohol molecules are present in the crystals. The iodide anions are free to function as tridentate XB acceptors and unlimited (6.3) anionic networks are formed in all four cases. This net is not planar but strongly wrinkled as the $(C-I)_3$...I group is pyramidal. The six iodide nodes are the vertices of a trigonal anti-prism whose dimension can be fully described by the mean distance between two iodide anions on the same side of the layer, and by the distance between the planes through the iodide nodes on the two layer sides. The hole dimension increases with n and for n=6,8 it is so large that the cation cannot fulfill the voids and three different (6,3) nets interpenetrate to give an intriguing borromean system (Liantonio, et al., 2006). In all four structures, two layers are faced vertex to vertex, hole to hole, as two egg trays where the cations are hosted. In the K2.2.2/NaI/DIPFA2 adducts (CX1) described here, I anions are tridentate XB acceptors, DIPFA₂ are bidentate XB donors and a (6,3) net is formed which is closely similar to that of the KI analogue (CX2). Figure 1 shows the molecular geometry, with the numbering scheme. The Na⁺ cation is small relative to the cryptand cavity and is therefore not exactly in the middle of the [2.2.2] cryptand cavity, as was the case for K⁺ in CX2. As a consequence, the two independent Na⁺—N distances are very different. Table 1 reports some geometric details of the supramolecular anion hosting cavity and of the supramolecular cation dimensions in CX1 and CX2. Table 2 shows the halogen and hydrogen bonds of CX1. The 'egg tray' here is too small to isolate completely the 'eggs', namely the supramolecular cations, which are linked to each other by a couple of symmetry equivalent weak hydrogen bonds between the methylene hydrogen atom and ether oxygen forming a layer with the same topology of the anion network. Both the anion and cation layers are shown in Figure 2 and 3.

S2. Experimental

The complex was prepared in two steps. Equimolar amounts of [2.2.2] cryptand and NaI in ethanol solution were mixed and refluxed for 5 min. After cooling, the solution was added to a chloroform solution of DIPFA₂ (1.5 equivalents). A glass vial containg the resulting mixture was put in a wide mouth flask containing vaseline oil. Vapour exchange at room temperature afforded colourless, thin, hexagonal crystals of good quality after a few days.

S3. Refinement

The tetrafluorodiiodoethane molecule was rotationally disordered. The split model was refined with restraints on geometric parameters and ADPs. The rotation of this molecule around the I···I axis, was so large that *SHELXL* suggested a second splitting of two F atoms. We considered this suggestion not useful and even dangerous to refinement stability in view of the high correlations between split atoms parameters (already up to 0.87). Hydrogen atoms were positioned geometrically and refined using a riding model, with C—H = 0.95-0.99 Å and with $U_{iso}(H) = 1.2$ times $U_{eq}(C)$.

Figure 1

The three components of CX1, with numbering scheme of the indepent atoms. The disordered atoms of DIPFA₂, generated by the twofold axis are omitted for clarity. Probability level at 50%.

Figure 2

A layer of cations and two layers of anions, are shown along the a* axis, only partial overposition is adopted for sake of clarity. One hexagonal ring of supramolecular cations and of supramolecular anions are the topologic units of the layers and are shown in spacefilling style.

Figure 3

The same molecular assembly as shown in Figure 2, projected down the c axis

(4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane)sodium iodide–1,1,2,2,tetrafluoro-1,2-diiodoethane (2/3)

Crystal data

 $[Na(C_{18}H_{36}N_2O_6)]I^{-}\cdot 1.5C_2F_4I_2$ $M_r = 1057.11$ Trigonal, R3c a = 11.634 (2) Å c = 84.945 (15) Å V = 9957 (4) Å³ Z = 12F(000) = 6012 $D_x = 2.116 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 20222 reflections $\theta = 2.2-29.8^{\circ}$ $\mu = 3.84 \text{ mm}^{-1}$ T = 93 KHexagonal table, colourless $0.28 \times 0.25 \times 0.03 \text{ mm}$ Data collection

Bruker APEXII CCD diffractometer	2994 independent reflections 2604 reflections with $I > 2\sigma(I)$
Radiation source: sealed tube	$R_{\rm int} = 0.035$
φ and ω scans	$\theta_{\rm max} = 30.0^\circ, \ \theta_{\rm min} = 1.4^\circ$
Absorption correction: multi-scan	$h = -15 \rightarrow 15$
(SADABS; Bruker, 2008)	$k = -15 \rightarrow 15$
$T_{\min} = 0.676, T_{\max} = 1.000$	$l = -114 \rightarrow 114$
47282 measured reflections	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from
$wR(F^2) = 0.076$	neighbouring sites
S = 1.07	H-atom parameters constrained
2994 reflections	$w = 1/[\sigma^2(F_0^2) + (0.040P)^2]$
148 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
44 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.64 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.58 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. OXFORD low temperature device.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. The tetrafluorodiiodoethane molecule was rotationally disordered. The split model was refined with restraints on geometric parameters and ADPs. The rotation of this molecule around the $I \cdots I$ axis, was so large that *SHELXL* suggested a second splitting of two F atoms. We considered not useful and even dangerous the suggestion,

because the largest correlations between split atoms parameters, already high (<0.87), would be larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

I2 0.0000 0.0000 0.47358 (2) 0.01498 (1)I1 0.22447 (2) 0.05878 (2) 0.44381 (2) 0.02001 (9)C7 0.3618 (9) 0.1058 (7) 0.42456 (12) 0.029 (2)F1 0.4634 (7) 0.2274 (9) 0.42658 (10) 0.065 (3)F2 0.4115 (9) 0.0252 (9) 0.42395 (11) 0.080 (3)C8 0.3016 (8) 0.1016 (6) 0.40861 (12) 0.028 (2)F3 0.2439 (9) 0.1750 (10) 0.40947 (12) 0.074 (3)F4 0.2054 (7) -0.0222 (8) 0.40618 (10) 0.083 (4)Na 0.3333 0.6667 0.52071 (5) 0.0147 (9)	0.5
I1 $0.22447(2)$ $0.05878(2)$ $0.44381(2)$ $0.02001(9)$ C7 $0.3618(9)$ $0.1058(7)$ $0.42456(12)$ $0.029(2)$ F1 $0.4634(7)$ $0.2274(9)$ $0.42658(10)$ $0.065(3)$ F2 $0.4115(9)$ $0.0252(9)$ $0.42395(11)$ $0.080(3)$ C8 $0.3016(8)$ $0.1016(6)$ $0.40861(12)$ $0.028(2)$ F3 $0.2439(9)$ $0.1750(10)$ $0.40947(12)$ $0.074(3)$ F4 $0.2054(7)$ $-0.0222(8)$ $0.40618(10)$ $0.083(4)$ Na 0.3333 0.6667 $0.52071(5)$ $0.0147(9)$	0.5
C7 $0.3618 (9)$ $0.1058 (7)$ $0.42456 (12)$ $0.029 (2)$ F1 $0.4634 (7)$ $0.2274 (9)$ $0.42658 (10)$ $0.065 (3)$ F2 $0.4115 (9)$ $0.0252 (9)$ $0.42395 (11)$ $0.080 (3)$ C8 $0.3016 (8)$ $0.1016 (6)$ $0.40861 (12)$ $0.028 (2)$ F3 $0.2439 (9)$ $0.1750 (10)$ $0.40947 (12)$ $0.074 (3)$ F4 $0.2054 (7)$ $-0.0222 (8)$ $0.40618 (10)$ $0.083 (4)$ Na 0.3333 0.6667 $0.48841 (2)$ $0.0176 (4)$ N1 0.3333 0.6667 $0.52071 (5)$ $0.0147 (9)$	0.5
F10.4634 (7)0.2274 (9)0.42658 (10)0.065 (3)F20.4115 (9)0.0252 (9)0.42395 (11)0.080 (3)C80.3016 (8)0.1016 (6)0.40861 (12)0.028 (2)F30.2439 (9)0.1750 (10)0.40947 (12)0.074 (3)F40.2054 (7)-0.0222 (8)0.40618 (10)0.083 (4)Na0.33330.66670.48841 (2)0.0176 (4)N10.33330.66670.52071 (5)0.0147 (9)	0.5
F20.4115 (9)0.0252 (9)0.42395 (11)0.080 (3)C80.3016 (8)0.1016 (6)0.40861 (12)0.028 (2)F30.2439 (9)0.1750 (10)0.40947 (12)0.074 (3)F40.2054 (7)-0.0222 (8)0.40618 (10)0.083 (4)Na0.33330.66670.48841 (2)0.0176 (4)N10.33330.66670.52071 (5)0.0147 (9)	0.5
C8 0.3016 (8) 0.1016 (6) 0.40861 (12) 0.028 (2) F3 0.2439 (9) 0.1750 (10) 0.40947 (12) 0.074 (3) F4 0.2054 (7) -0.0222 (8) 0.40618 (10) 0.083 (4) Na 0.3333 0.6667 0.48841 (2) 0.0176 (4) N1 0.3333 0.6667 0.52071 (5) 0.0147 (9)	0.5
F30.2439 (9)0.1750 (10)0.40947 (12)0.074 (3)F40.2054 (7)-0.0222 (8)0.40618 (10)0.083 (4)Na0.33330.66670.48841 (2)0.0176 (4)N10.33330.66670.52071 (5)0.0147 (9)	0.5
F4 0.2054 (7) -0.0222 (8) 0.40618 (10) 0.083 (4) Na 0.3333 0.6667 0.48841 (2) 0.0176 (4) N1 0.3333 0.6667 0.52071 (5) 0.0147 (9) C1 0.24(2) (2) 0.5207 (2) 0.52072 (2) 0.0147 (9)	0.5
Na 0.3333 0.6667 0.48841 (2) 0.0176 (4) N1 0.3333 0.6667 0.52071 (5) 0.0147 (9) C1 0.24(2) (2) 0.25272 (2) 0.52072 (2) 0.0147 (9)	0.5
N1 0.3333 0.6667 0.52071 (5) 0.0147 (9)	
C1 0.2462 (3) 0.5297 (3) 0.52603 (3) 0.0167 (6)	
H1A 0.1525 0.5071 0.5248 0.020*	
H1B 0.2622 0.5232 0.5374 0.020*	
C2 0.2684 (3) 0.4311 (3) 0.51696 (4) 0.0174 (6)	
H2A 0.3585 0.4461 0.5191 0.021*	
H2B 0.2029 0.3397 0.5202 0.021*	

01	0.2542 (2)	0.44777 (19)	0.50055 (2)	0.0159 (4)
C3	0.2593 (3)	0.3468 (3)	0.49158 (3)	0.0186 (6)
H3A	0.1802	0.2595	0.4938	0.022*
H3B	0.3394	0.3422	0.4944	0.022*
C4	0.2632 (3)	0.3789 (3)	0.47452 (4)	0.0186 (6)
H4A	0.2602	0.3067	0.4680	0.022*
H4B	0.1857	0.3884	0.4718	0.022*
O2	0.3838 (2)	0.5009(2)	0.47155 (3)	0.0180 (5)
C5	0.4235 (3)	0.5180 (3)	0.45540 (4)	0.0198 (6)
H5A	0.4210	0.4363	0.4516	0.024*
H5B	0.5162	0.5918	0.4546	0.024*
C6	0.3357 (3)	0.5475 (3)	0.44487 (3)	0.0191 (6)
H6A	0.3687	0.5597	0.4339	0.023*
H6B	0.2442	0.4708	0.4450	0.023*
N2	0.3333	0.6667	0.44990 (5)	0.0173 (9)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I2	0.01522 (13)	0.01522 (13)	0.01451 (17)	0.00761 (6)	0.000	0.000
I1	0.01636 (13)	0.02578 (14)	0.01665 (12)	0.00961 (9)	0.00183 (7)	0.00086 (8)
C7	0.028 (5)	0.051 (6)	0.021 (5)	0.030 (5)	0.005 (4)	0.002 (4)
F1	0.025 (3)	0.080 (6)	0.025 (3)	-0.022 (4)	0.007 (2)	-0.019 (5)
F2	0.114 (8)	0.145 (7)	0.058 (6)	0.122 (7)	0.058 (5)	0.066 (5)
C8	0.017 (5)	0.048 (6)	0.020 (5)	0.017 (4)	0.004 (4)	0.003 (4)
F3	0.086 (7)	0.137 (7)	0.060 (6)	0.101 (6)	0.046 (5)	0.063 (6)
F4	0.033 (4)	0.089(7)	0.028 (3)	-0.043 (4)	0.009 (3)	-0.022 (5)
Na	0.0162 (7)	0.0162 (7)	0.0204 (10)	0.0081 (3)	0.000	0.000
N1	0.0115 (13)	0.0115 (13)	0.021 (2)	0.0057 (6)	0.000	0.000
C1	0.0148 (14)	0.0158 (15)	0.0172 (14)	0.0058 (13)	0.0007 (11)	0.0012 (11)
C2	0.0184 (16)	0.0147 (15)	0.0184 (15)	0.0078 (13)	-0.0009 (12)	0.0023 (11)
O1	0.0194 (11)	0.0140 (11)	0.0163 (10)	0.0099 (9)	0.0001 (8)	0.0004 (8)
C3	0.0219 (16)	0.0120 (15)	0.0211 (15)	0.0079 (13)	0.0002 (12)	-0.0011 (11)
C4	0.0167 (15)	0.0135 (15)	0.0221 (15)	0.0049 (13)	0.0016 (12)	-0.0015 (12)
O2	0.0182 (11)	0.0143 (11)	0.0185 (11)	0.0058 (9)	0.0000 (8)	-0.0003 (8)
C5	0.0192 (16)	0.0188 (16)	0.0207 (15)	0.0091 (13)	0.0038 (13)	0.0002 (12)
C6	0.0197 (16)	0.0195 (16)	0.0168 (14)	0.0089 (13)	0.0001 (12)	-0.0016 (12)
N2	0.0167 (14)	0.0167 (14)	0.018 (2)	0.0084 (7)	0.000	0.000

Geometric parameters (Å, °)

I1—C8 ⁱ	2.153 (11)	O1—C3	1.427 (4)	
I1—C7	2.156 (11)	C3—C4	1.492 (4)	
C7—F1	1.325 (5)	С3—НЗА	0.9900	
C7—F2	1.327 (5)	C3—H3B	0.9900	
С7—С8	1.514 (7)	C4—O2	1.434 (4)	
C8—F4	1.325 (5)	C4—H4A	0.9900	
C8—F3	1.327 (5)	C4—H4B	0.9900	

supporting information

N1—C1 ⁱⁱ	1.468 (3)	O2—C5	1.430 (4)
N1—C1	1.468 (3)	C5—C6	1.520 (4)
N1—C1 ⁱⁱⁱ	1.468 (3)	С5—Н5А	0.9900
C1—C2	1.508 (4)	C5—H5B	0.9900
C1—H1A	0.9900	C6—N2	1,464 (3)
C1—H1B	0.9900	C6—H6A	0.9900
$C^2 = 01$	1.428(4)	C6—H6B	0.9900
C2_H2A	0.9900	N2	1.464(3)
C2—H2B	0.9900	$N2-C6^{ii}$	1.464(3)
C2—112D	0.9900	N2	1.404 (4)
F1—C7—F2	106 7 (7)	01 - C3 - C4	108.7(2)
F1 - C7 - C8	107.6(5)	01 - C3 - H3A	109.9
$F_{2} - C_{7} - C_{8}$	107.6(5)	C4 - C3 - H3A	109.9
$F_{1} = C_{7} = U_{1}$	107.4(5) 109.0(5)	O1-C3-H3B	109.9
$F_{1} = C_{7} = H$	107.0 (5)	C_{1} C_{3} H_{3} H_{3} H_{3}	109.9
$\Gamma_2 = C_7 = \Pi$	112.3(0) 112.5(4)	$U_{4} = C_{5} = H_{5} D_{5}$	109.9
C_{0} C_{1} C_{1} C_{1} C_{2} C_{2	115.5(4)	02 C4 C2	100.3
$\Gamma4 - C\delta - \Gamma3$	100.3(7)	02 - 04 - 03	108.1 (2)
F4 - C8 - C7	107.5 (5)	$O_2 - C_4 - H_4A$	110.1
F3	107.7 (5)	C3—C4—H4A	110.1
F1'	118.8 (9)	O2—C4—H4B	110.1
$F4-C8-11^{1}$	110.4 (6)	C3—C4—H4B	110.1
$F3-C8-I1^{1}$	110.5 (6)	H4A—C4—H4B	108.4
$C7-C8-I1^{i}$	114.0 (4)	C5—O2—C4	113.2 (2)
$C1^{ii}$ —N1—C1	110.97 (18)	O2—C5—C6	112.9 (3)
$C1^{ii}$ — $N1$ — $C1^{iii}$	110.97 (18)	O2—C5—H5A	109.0
C1—N1—C1 ⁱⁱⁱ	110.97 (18)	C6—C5—H5A	109.0
N1-C1-C2	112.3 (2)	O2—C5—H5B	109.0
N1—C1—H1A	109.1	C6—C5—H5B	109.0
C2—C1—H1A	109.1	H5A—C5—H5B	107.8
N1—C1—H1B	109.1	N2—C6—C5	112.0 (3)
C2—C1—H1B	109.1	N2—C6—H6A	109.2
H1A—C1—H1B	107.9	С5—С6—Н6А	109.2
O1—C2—C1	108.6 (2)	N2—C6—H6B	109.2
01—C2—H2A	110.0	C5—C6—H6B	109.2
C1	110.0	H6A—C6—H6B	107.9
01-C2-H2B	110.0	$C6^{iii}$ N2— $C6^{ii}$	111 84 (19)
C1 - C2 - H2B	110.0	$C6^{iii} - N2 - C6$	111.84 (19)
$H^2A = C^2 = H^2B$	108.3	$C6^{ii}$ N2 C6	111.84 (18)
$C_{3} - 0_{1} - C_{2}^{2}$	100.3 110.8(2)		111.04 (10)
01-02	110.0 (2)		
F1-C7-C8-F4	176.1 (9)	$C1^{iii}$ N1—C1—C2	162.6 (3)
F2	61.5 (8)	N1 - C1 - C2 - O1	-54.8(3)
I1-C7-C8-F4	-633(8)	C1 - C2 - O1 - C3	-1733(2)
F1 - C7 - C8 - F3	-69 6 (8)	$C_{2} = 0_{1} = C_{3} = C_{4}$	-1722(2)
$F_{2}^{-}C_{2}^{-}C_{8}^{-}F_{3}^{-}$	175 9 (7)	01 - C3 - C4 - 02	63 8 (3)
12 - 07 - 00 - 13 11 - 07 - 08 - F3	511(7)	$C_{1} = C_{2} = C_{4} = 0_{2}$	158 A (2)
$F1 C7 C8 I1^{i}$	51.1(7) 53 $\Lambda(8)$	$C_{1} = C_{2} = C_{2}$	710(2)
11 - 0 / - 0 - 11 E2 C7 C9 11	-612(7)	$C_{+} - C_{2} - C_{3} - C_{0}$	(1.9(3))
Г2—U/—U0—II	-01.2(/)	02-03-00-NZ	38.0(3)

supporting information

I1—C7—C8—I1 ⁱ	174.0 (2)	C5—C6—N2—C6 ⁱⁱⁱ	-154.9 (3)
$C1^{ii}$ —N1—C1—C2	-73.6 (4)	C5—C6—N2—C6 ⁱⁱ	78.7 (4)

Symmetry codes: (i) -x+2/3, -x+y+1/3, -z+5/6; (ii) -y+1, x-y+1, z; (iii) -x+y, -x+1, z.