[Journal logo]

Volume 69 
Part 7 
Pages m387-m388  
July 2013  

Received 15 March 2013
Accepted 10 June 2013
Online 15 June 2013

Key indicators
Single-crystal X-ray study
T = 93 K
Mean [sigma](C-C) = 0.005 Å
Disorder in solvent or counterion
R = 0.032
wR = 0.076
Data-to-parameter ratio = 20.2
Details
Open access

(4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane)sodium iodide-1,1,2,2,tetrafluoro-1,2-diiodoethane (2/3)

aNFMLab, Department of Chemistry, Materials and Chemical Engineering, "Giulio Natta", Politecnico di Milano, Via Mancinelli, 7, I-20131 Milano, Italy
Correspondence e-mail: giancarlo.terraneo@polimi.it

The title complex (CX1), [Na(C18H36N2O6)]I·1.5C2F4I2, is a three-component adduct containing a [2.2.2]-cryptand, sodium iodide and 1,1,2,2-tetrafluoro-1,2-diiodoethane. The diiodoethane works as a bidentate halogen-bonding (XB) donor, the [2.2.2]-cryptand chelates the sodium cation, and the iodide counter-ion acts as a tridentate XB acceptor. A (6,3) network is formed in which iodide anions are the nodes and halocarbons the sides. The network symmetry is C3i and the I...I- XB distance is 3.4492 (5) Å. This network is strongly deformed and wrinkled. It forms a layer 9.6686 (18) Å high and the inter-layer distance is 4.4889 (10) Å. The cations, interacting with each other via weak O...H hydrogen bonds, are confined between two anionic layers and also form a (6,3) net. The structure of CX1 is closely related to that of the KI homologue (CX2). The 1,1,2,2,-tetrafluoro-1,2-diiodoethane molecule is rotationally disordered around the I...I axis, resulting in an 1:1 disorder of the C2F4 moiety.

Related literature

For other K2.2.2./salt/haloperfluorocarbon complexes, see: Fox et al. (2004[Fox, D. B., Liantonio, R., Metrangolo, P., Pilati, T. & Resnati, G. (2004). J. Fluorine Chem. 125, 271-281.]); Metrangolo et al. (2004[Metrangolo, P., Pilati, T. & Resnati, G. (2004). Handbook of Fluorous Chemistry, pp. 507-520. Weinheim: Wiley VCH.]); Liantonio et al. (2003[Liantonio, R., Metrangolo, P., Pilati, T. & Resnati, G. (2003). Cryst. Growth Des. 3, 355-361.], 2006[Liantonio, R., Metrangolo, P., Meyer, F., Pilati, T., Navarrini, W. & Resnati, G. (2006). Chem. Commun. pp. 1819-1821.]).

[Scheme 1]

Experimental

Crystal data
  • [Na(C18H36N2O6)]I-·1.5C2F4I2

  • Mr = 1057.11

  • Trigonal, [R \overline 3c ]

  • a = 11.634 (2) Å

  • c = 84.945 (15) Å

  • V = 9957 (4) Å3

  • Z = 12

  • Mo K[alpha] radiation

  • [mu] = 3.84 mm-1

  • T = 93 K

  • 0.28 × 0.25 × 0.03 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.676, Tmax = 1.000

  • 47282 measured reflections

  • 2994 independent reflections

  • 2604 reflections with I > 2[sigma](I)

  • Rint = 0.035

Refinement
  • R[F2 > 2[sigma](F2)] = 0.032

  • wR(F2) = 0.076

  • S = 1.07

  • 2994 reflections

  • 148 parameters

  • 44 restraints

  • H-atom parameters constrained

  • [Delta][rho]max = 1.64 e Å-3

  • [Delta][rho]min = -0.58 e Å-3

Table 1
Some parameters (Å, Å3) of the anionic layer and of the cation in the structures CX1 and CX2

  CX1 CX2
Hole side1 11.634 (2) 11.7478 (15)
Layer height2 9.6686 (18) 9.6380 (13)
h3 4.4889 (10) 4.5343 (7)
V3 303.79 (7) 312.89 (6)
M+-O1 2.460 (2) 2.6650 (12)
M+-O2 2.692 (2) 2.7737 (13)
M+-N1 2.744 (5) 2.941 (2)
M+-N2 3.271 (5) 2.985 (3)
Notes: (1) Distance between the nearest iodide anions on the same side of the anionic layer, equal to the cell parameter a; (2) distance between the planes through the iodide anions on the opposite sides of the anionic layer; (3) h = distance between the nearest planes through iodide anions of contiguous layers. (4) V = a2h/2, volume of the trigonal prism whose vertices are the three iodide anions on a layer and the same faced on the contiguous one.

Table 2
Halogen and hydrogen bonds (Å, °) in CX1 and CX2

In CX2, the cell origin and the atom numbering are different, so that atom labels and symmetry code refer only to CX1; for CX2 the reported values refer to the equivalent atoms and values.

X...Y-C CX1 X...Y CX1 C-X...Y CX2 X...Y CX2 C-X...Y
I2...I1-C7 3.4492 (5) 175.99 (17) 3.4492 (5) 176.30 (16)
I2...I1-C8i 3.4492 (5) 168.30 (16) 3.4492 (5) 166.40 (16)
O1...(H3B-C3)ii 2.63 147.9 2.60 147.6
Symmetry codes: (i) [{2\over 3}-x, {1\over 3}-x+y, {5\over 6}-z]; (ii) x-y, x, 1-z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL2012.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2225 ).


Acknowledgements

GC, PM, GR and GT acknowledge the Fondazione Cariplo (project 2010-1351) and "5x1000 junior project" for financial support.

References

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  [CrossRef] [IUCr Journals]
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Fox, D. B., Liantonio, R., Metrangolo, P., Pilati, T. & Resnati, G. (2004). J. Fluorine Chem. 125, 271-281.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Liantonio, R., Metrangolo, P., Meyer, F., Pilati, T., Navarrini, W. & Resnati, G. (2006). Chem. Commun. pp. 1819-1821.  [CSD] [CrossRef]
Liantonio, R., Metrangolo, P., Pilati, T. & Resnati, G. (2003). Cryst. Growth Des. 3, 355-361.  [CSD] [CrossRef] [ChemPort]
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Metrangolo, P., Pilati, T. & Resnati, G. (2004). Handbook of Fluorous Chemistry, pp. 507-520. Weinheim: Wiley VCH.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2013). E69, m387-m388   [ doi:10.1107/S1600536813016085 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.