organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 7| July 2013| Pages o1053-o1054

rac-4-(4-Chloro­phen­yl)-2-methyl­amino-3-nitro-5,6,7,8-tetra­hydro-4H-chromen-5-one

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 4 May 2013; accepted 27 May 2013; online 8 June 2013)

The title compound, C16H15ClN2O4, contains a chiral centre and crystallizes as a racemate. The methyl­ene group β-positioned to the carbonyl group is partially (21%) disordered. It flips to the opposite sides of the corresponding six-membered carbocycle by −0.304 (3) and 0.197 (11) Å, producing alternative envelope conformations. The planes of the pyran and chloro­phenyl rings form a dihedral angle of 86.25 (9)°. The mol­ecular structure is characterized by an intra­molecular N—H⋯O inter­action, which generates an S(6) ring motif. The corresponding amino N atom deviates from the plane of the pyran ring by 0.1634 (19) Å. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming C(8) chains running parallel to the b-axis direction. The crystal structure also features C—H⋯π inter­actions.

Related literature

For the uses and biological importance of chromene, see: Ercole et al. (2009[Ercole, F., Davis, T. P. & Evans, R. A. (2009). Macromolecules, 42, 1500-1511.]); Geen et al. (1996[Geen, G. R., Evans, J. M. & Vong, A. K. (1996). Comprehensive Heterocyclic Chemistry, 1st ed., edited by A. R. Katrizky, Vol. 3, pp. 469-500. New York: Pergamon.]) Khan et al. (2010[Khan, K. M., Ambreen, N., Mughal, U. R., Jalil, S., Perveen, S. & Choudhary, M. I. (2010). Eur. J. Med. Chem. 45, 4058-4064.]); Raj et al. (2010[Raj, T., Bhatia, R. K., Kapur, A., Sharma, M., Saxena, A. K. & Ishar, M. P. S. (2010). Eur. J. Med. Chem. 45, 790-794.]). For related structures, see: Sun et al., (2012[Sun, R., Wang, K., Wu, D.-D., Huang, W. & Ou, Y.-B. (2012). Acta Cryst. E68, o824.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15ClN2O4

  • Mr = 334.75

  • Monoclinic, P 21 /n

  • a = 8.0285 (4) Å

  • b = 10.8460 (5) Å

  • c = 18.2337 (9) Å

  • β = 94.067 (2)°

  • V = 1583.74 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.35 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.912, Tmax = 0.924

  • 11848 measured reflections

  • 2786 independent reflections

  • 2208 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.119

  • S = 1.09

  • 2786 reflections

  • 218 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the pyran ring C7/C8/C13/O1/C14/C15.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3 0.90 (2) 1.86 (2) 2.599 (2) 137 (2)
C2—H2⋯O4i 0.93 2.53 3.420 (3) 160
C10—H10ACg1ii 0.97 2.75 3.515 (2) 136
C16—H16BCg1iii 0.96 2.76 3.577 (3) 144
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y+2, -z; (iii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chromene derivatives are very important heterocyclic compounds that have a variety of industrial, biological and chemical synthesis applications (Geen et al., 1996; Ercole et al., 2009). They exhibit a number of pharmacological activities such as anti-HIV, anti-inflammatory, anti-bacterial, anti-allergic, anti-cancer etc. (Khan et al., 2010, Raj et al., 2010). Against this backround, X-ray analysis of the title compound has been carried out to study its structural aspects.

X-ray analysis confirms the molecular structure and atom connectivity. The molecular structure is stabilized by intramolecular N2—H2A···O3 interaction, which generates S(6) ring motif as illustrated in Fig. 1. The methelene group carbon atom C11 of the chromene moiety is disordered over two positions, with an occupancy factor of 0.787 (5):0.213 (5). The pyrane ring (C7/C8/C13/C14/C15/O1) is almost orthogonal to the chlorophenyl ring (C1–C6), with a dihedral angle of 86.25 (9)° between their mean planes.

The pyrane ring is almost coplanar with the least-square planes of the nitro and methylene groups, making dihedral angles of 5.19 (14) and 5.01 (16)°, with them, respectively.

The six-membered carbocyclic rings (C8/C9/C10/C11/C12/C13) and (C8/C9/C10/C11'/C12/C13) of the chromene moiety adopt envelope conformations on the atoms C11 and C11', with puckering paramaters: Q2 = 0.366 (3) Å, Q3 = 0.229 (3) Å and ϕ2 = 178.1 (2)°, and Q2 = 0.211 (7) Å, Q3 = -0.185 (5) Å and ϕ2 = 3.1 (2)°, respectively. Also, the atoms C11 and C11' deviate from their respective mean planes of the rest of the ring atoms by -0.304 (3) and 0.197 (11) Å, respectively. The amine group nitrogen atom N2 deviates by 0.1634 (19) Å from the mean plane of the pyran ring. The chlorine atom Cl1 deviates from the phenyl ring (C1–C6) by 0.0571 (9) Å. The title compound exihibits structural similarities with an already reported related structure (Sun et al., 2012).

In the crystal, the molecules are linked via intermolecular C2—H2···O4i hydrogen-bond interaction, which generates C(8) chains running parallel to b axis (Bernstein et al.,1995). The crystal structure is further stabilized by C10—H10A···Cg1ii and C16—H16B···Cg1iii intermolecular interactions, where Cg1 is the center of gravity of the pyran ring (C7/C8/C13/O1/C14/C15). The symmetry codes: (i) 3/2 - x, 1/2 + y, 1/2 - z (ii) 2 - x, 2 - y, -z (iii) 1 - x, 1 - y, -z. The packing view of the title compound is shown in Fig. 2.

Related literature top

For the uses and biological importance of chromene, see: Ercole et al. (2009); Geen et al. (1996) Khan et al. (2010); Raj et al. (2010). For related structures, see: Sun et al., (2012). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A solution of 4-chlorobenzaldehyde (0.14 g, 1.0 mmol), cyclic 1,3-dicarbonyl compound (1.0 mmol), NMSM (0.15 g, 1.0 mmol) and piperidine (0.2 equivalents) in EtOH (2 ml) was stirred for 3.5 h. After the reaction was complete as indicated by TLC, the product was filtered and washed with EtOH (2 ml) to remove the excess base and other impurities. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethanol at room temperature.

Refinement top

Positions of the H atoms were localized from the difference electron-density maps and their distances were geometrically constrained. The H atoms of the amine group were constrained to distances of N—H = 0.901 (10) Å with Uiso(H) = 1.2Ueq(N). The H atoms bound to the C atoms were treated as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methelene, C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) for methiene, and C—H = 0.96 Å and Uiso(H) = 1.5 Ueq(C) for methyl groups. The rotation angles for methyl groups were optimized by least squares. The bond distances of the disordered components were restrained using standard similarity restraint SADI (SHELXL97; Sheldrick, 2008) with an s.u. of 0.01 Å. The atomic displacement parameters of the major and minor components were made similar using the constraint EADP.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. The intramolecular hydrogen bond is shown. The displacement ellipsoids are drawn at 30% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along c axis, showing C2—H2···O4i hydrogen bonds producing C(8) chains parallel to b axis. H atoms not involved in the hydrogen bonding have been excluded for clarity. The symmetry code: (i) 3/2 - x, 1/2 + y, 1/2 - z.
rac-4-(4-Chlorophenyl)-2-methylamino-3-nitro-5,6,7,8-tetrahydro-4H-chromen-5-one top
Crystal data top
C16H15ClN2O4F(000) = 696
Mr = 334.75Dx = 1.404 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2208 reflections
a = 8.0285 (4) Åθ = 2.2–25.0°
b = 10.8460 (5) ŵ = 0.26 mm1
c = 18.2337 (9) ÅT = 296 K
β = 94.067 (2)°Block, colourless
V = 1583.74 (13) Å30.35 × 0.30 × 0.30 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
2786 independent reflections
Radiation source: fine-focus sealed tube2208 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and ϕ scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 98
Tmin = 0.912, Tmax = 0.924k = 1212
11848 measured reflectionsl = 1521
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.9511P]
where P = (Fo2 + 2Fc2)/3
2786 reflections(Δ/σ)max = 0.002
218 parametersΔρmax = 0.32 e Å3
4 restraintsΔρmin = 0.28 e Å3
Crystal data top
C16H15ClN2O4V = 1583.74 (13) Å3
Mr = 334.75Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.0285 (4) ŵ = 0.26 mm1
b = 10.8460 (5) ÅT = 296 K
c = 18.2337 (9) Å0.35 × 0.30 × 0.30 mm
β = 94.067 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2786 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2208 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.924Rint = 0.029
11848 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0424 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.32 e Å3
2786 reflectionsΔρmin = 0.28 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.8013 (3)0.7871 (2)0.15451 (11)0.0393 (5)
H10.89340.75100.17980.047*
C20.7070 (3)0.8723 (2)0.19018 (12)0.0440 (5)
H20.73580.89440.23870.053*
C30.5699 (3)0.9234 (2)0.15224 (13)0.0443 (5)
C40.5244 (3)0.8923 (2)0.08060 (13)0.0426 (5)
H40.43020.92710.05610.051*
C50.6215 (2)0.80814 (19)0.04556 (11)0.0359 (5)
H50.59270.78700.00310.043*
C60.7614 (2)0.75474 (18)0.08203 (11)0.0321 (4)
C70.8702 (2)0.66430 (18)0.04219 (11)0.0333 (5)
H70.96480.64020.07610.040*
C80.9376 (2)0.72565 (18)0.02368 (11)0.0340 (5)
C91.0653 (3)0.8231 (2)0.01071 (13)0.0408 (5)
C101.1262 (3)0.8872 (2)0.07623 (15)0.0568 (7)
H10A1.15140.97220.06310.068*0.787 (5)
H10B1.22930.84850.08880.068*0.787 (5)
H10C1.07320.96760.07940.068*0.213 (5)
H10D1.24500.90120.06640.068*0.213 (5)
C111.0072 (4)0.8859 (3)0.14166 (18)0.0539 (9)0.787 (5)
H11A1.06190.91810.18340.065*0.787 (5)
H11B0.91400.93970.13310.065*0.787 (5)
C11'1.1015 (14)0.8288 (11)0.1501 (5)0.0539 (9)0.213 (5)
H11C1.19490.77440.15720.065*0.213 (5)
H11D1.10090.89250.18740.065*0.213 (5)
C120.9406 (3)0.7556 (2)0.16027 (13)0.0488 (6)
H12A0.84570.76080.19620.059*0.787 (5)
H12B1.02680.70700.18130.059*0.787 (5)
H12C0.95280.69250.19720.059*0.213 (5)
H12D0.85190.81050.17870.059*0.213 (5)
C130.8893 (3)0.69552 (19)0.09213 (11)0.0360 (5)
C140.7355 (2)0.52214 (18)0.05564 (11)0.0344 (5)
C150.7772 (2)0.54932 (18)0.01722 (11)0.0329 (5)
C160.6240 (4)0.3970 (3)0.15987 (14)0.0699 (9)
H16A0.54750.45620.18230.105*
H16B0.57710.31580.16550.105*
H16C0.72750.40040.18310.105*
N10.7340 (2)0.46946 (16)0.07175 (10)0.0408 (4)
N20.6539 (2)0.42483 (17)0.08263 (10)0.0442 (5)
O10.77966 (19)0.59923 (14)0.10937 (8)0.0436 (4)
O21.1201 (2)0.84650 (17)0.05139 (10)0.0574 (5)
O30.6480 (2)0.37405 (14)0.05646 (9)0.0529 (4)
O40.7809 (3)0.49375 (16)0.13643 (9)0.0593 (5)
Cl10.45353 (11)1.03329 (9)0.19602 (5)0.0864 (3)
H2A0.621 (3)0.377 (2)0.0458 (10)0.058 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0421 (12)0.0421 (12)0.0334 (11)0.0032 (10)0.0014 (9)0.0005 (9)
C20.0523 (13)0.0468 (13)0.0341 (12)0.0107 (11)0.0099 (10)0.0078 (10)
C30.0439 (12)0.0403 (12)0.0510 (14)0.0058 (10)0.0186 (10)0.0095 (11)
C40.0342 (11)0.0407 (12)0.0533 (14)0.0023 (9)0.0048 (10)0.0005 (10)
C50.0362 (11)0.0359 (11)0.0354 (11)0.0074 (9)0.0023 (8)0.0038 (9)
C60.0334 (10)0.0292 (10)0.0342 (11)0.0072 (8)0.0056 (8)0.0008 (8)
C70.0329 (10)0.0325 (11)0.0342 (11)0.0016 (8)0.0002 (8)0.0004 (9)
C80.0325 (10)0.0301 (11)0.0401 (12)0.0018 (8)0.0065 (8)0.0025 (9)
C90.0336 (11)0.0371 (12)0.0520 (14)0.0031 (9)0.0066 (10)0.0091 (10)
C100.0599 (15)0.0415 (14)0.0707 (17)0.0169 (12)0.0173 (13)0.0015 (12)
C110.062 (2)0.0432 (19)0.0571 (19)0.0125 (14)0.0095 (16)0.0095 (15)
C11'0.062 (2)0.0432 (19)0.0571 (19)0.0125 (14)0.0095 (16)0.0095 (15)
C120.0615 (15)0.0446 (13)0.0417 (13)0.0119 (11)0.0136 (11)0.0021 (10)
C130.0379 (11)0.0303 (11)0.0405 (12)0.0044 (9)0.0084 (9)0.0011 (9)
C140.0345 (10)0.0297 (10)0.0399 (12)0.0027 (8)0.0081 (8)0.0001 (9)
C150.0360 (10)0.0271 (10)0.0358 (11)0.0005 (8)0.0044 (8)0.0014 (8)
C160.087 (2)0.076 (2)0.0483 (16)0.0372 (16)0.0119 (14)0.0187 (14)
N10.0514 (11)0.0311 (10)0.0404 (11)0.0013 (8)0.0063 (8)0.0047 (8)
N20.0542 (11)0.0378 (11)0.0416 (11)0.0144 (9)0.0102 (9)0.0070 (9)
O10.0555 (9)0.0415 (9)0.0341 (8)0.0178 (7)0.0051 (7)0.0012 (7)
O20.0482 (10)0.0634 (11)0.0606 (12)0.0179 (8)0.0035 (8)0.0148 (9)
O30.0695 (11)0.0331 (9)0.0572 (11)0.0129 (8)0.0109 (8)0.0050 (7)
O40.0923 (14)0.0494 (10)0.0353 (10)0.0065 (9)0.0008 (9)0.0095 (8)
Cl10.0797 (5)0.0901 (6)0.0916 (6)0.0240 (4)0.0224 (4)0.0350 (5)
Geometric parameters (Å, º) top
C1—C61.383 (3)C10—H10D0.9700
C1—C21.386 (3)C11—C121.540 (4)
C1—H10.9300C11—H11A0.9700
C2—C31.375 (3)C11—H11B0.9700
C2—H20.9300C11'—C121.516 (8)
C3—C41.373 (3)C11'—H11C0.9700
C3—Cl11.742 (2)C11'—H11D0.9700
C4—C51.386 (3)C12—C131.487 (3)
C4—H40.9300C12—H12A0.9700
C5—C61.390 (3)C12—H12B0.9700
C5—H50.9300C12—H12C0.9700
C6—C71.531 (3)C12—H12D0.9700
C7—C81.507 (3)C13—O11.387 (2)
C7—C151.507 (3)C14—N21.319 (3)
C7—H70.9800C14—O11.354 (2)
C8—C131.321 (3)C14—C151.379 (3)
C8—C91.480 (3)C15—N11.381 (3)
C9—O21.212 (3)C16—N21.444 (3)
C9—C101.494 (3)C16—H16A0.9600
C10—C111.475 (4)C16—H16B0.9600
C10—C11'1.489 (8)C16—H16C0.9600
C10—H10A0.9700N1—O41.241 (2)
C10—H10B0.9700N1—O31.264 (2)
C10—H10C0.9700N2—H2A0.901 (10)
C6—C1—C2121.4 (2)C12—C11—H11A109.1
C6—C1—H1119.3C10—C11—H11B109.1
C2—C1—H1119.3C12—C11—H11B109.1
C3—C2—C1118.5 (2)H11A—C11—H11B107.8
C3—C2—H2120.7C10—C11'—C12113.0 (6)
C1—C2—H2120.7C10—C11'—H11C109.0
C4—C3—C2122.0 (2)C12—C11'—H11C109.0
C4—C3—Cl1119.25 (19)C10—C11'—H11D109.0
C2—C3—Cl1118.77 (18)C12—C11'—H11D109.0
C3—C4—C5118.7 (2)H11C—C11'—H11D107.8
C3—C4—H4120.7C13—C12—C11'114.3 (4)
C5—C4—H4120.7C13—C12—C11109.3 (2)
C4—C5—C6121.05 (19)C13—C12—H12A109.8
C4—C5—H5119.5C11'—C12—H12A132.3
C6—C5—H5119.5C11—C12—H12A109.8
C1—C6—C5118.42 (19)C13—C12—H12B109.8
C1—C6—C7120.98 (18)C11'—C12—H12B72.9
C5—C6—C7120.58 (17)C11—C12—H12B109.8
C8—C7—C15108.83 (16)H12A—C12—H12B108.3
C8—C7—C6110.16 (16)C13—C12—H12C108.6
C15—C7—C6112.73 (16)C11'—C12—H12C109.1
C8—C7—H7108.3C11—C12—H12C138.6
C15—C7—H7108.3H12A—C12—H12C71.7
C6—C7—H7108.3C13—C12—H12D108.6
C13—C8—C9118.77 (19)C11'—C12—H12D108.6
C13—C8—C7123.07 (18)C11—C12—H12D75.4
C9—C8—C7118.15 (18)H12B—C12—H12D136.4
O2—C9—C8120.0 (2)H12C—C12—H12D107.5
O2—C9—C10122.1 (2)C8—C13—O1122.63 (18)
C8—C9—C10117.8 (2)C8—C13—C12126.9 (2)
C11—C10—C9114.4 (2)O1—C13—C12110.45 (18)
C11'—C10—C9119.7 (4)N2—C14—O1111.88 (18)
C11—C10—H10A108.7N2—C14—C15127.66 (19)
C11'—C10—H10A129.7O1—C14—C15120.45 (18)
C9—C10—H10A108.7C14—C15—N1120.21 (18)
C11—C10—H10B108.7C14—C15—C7123.32 (18)
C11'—C10—H10B70.3N1—C15—C7116.47 (17)
C9—C10—H10B108.7N2—C16—H16A109.5
H10A—C10—H10B107.6N2—C16—H16B109.5
C11—C10—H10C72.8H16A—C16—H16B109.5
C11'—C10—H10C107.4N2—C16—H16C109.5
C9—C10—H10C107.4H16A—C16—H16C109.5
H10B—C10—H10C138.8H16B—C16—H16C109.5
C11—C10—H10D136.3O4—N1—O3120.52 (18)
C11'—C10—H10D107.4O4—N1—C15118.43 (18)
C9—C10—H10D107.4O3—N1—C15121.05 (18)
H10A—C10—H10D67.7C14—N2—C16125.1 (2)
H10C—C10—H10D106.9C14—N2—H2A110.2 (17)
C10—C11—C12112.5 (2)C16—N2—H2A124.7 (17)
C10—C11—H11A109.1C14—O1—C13119.69 (16)
C6—C1—C2—C30.9 (3)C10—C11'—C12—C1333.1 (11)
C1—C2—C3—C40.1 (3)C10—C11'—C12—C1157.6 (6)
C1—C2—C3—Cl1178.49 (17)C10—C11—C12—C1346.9 (3)
C2—C3—C4—C50.9 (3)C10—C11—C12—C11'58.2 (6)
Cl1—C3—C4—C5177.67 (16)C9—C8—C13—O1175.11 (18)
C3—C4—C5—C60.7 (3)C7—C8—C13—O14.1 (3)
C2—C1—C6—C51.1 (3)C9—C8—C13—C124.8 (3)
C2—C1—C6—C7177.64 (19)C7—C8—C13—C12176.0 (2)
C4—C5—C6—C10.3 (3)C11'—C12—C13—C820.5 (7)
C4—C5—C6—C7178.48 (18)C11—C12—C13—C820.3 (3)
C1—C6—C7—C8119.8 (2)C11'—C12—C13—O1159.3 (6)
C5—C6—C7—C858.9 (2)C11—C12—C13—O1159.8 (2)
C1—C6—C7—C15118.4 (2)N2—C14—C15—N10.5 (3)
C5—C6—C7—C1562.8 (2)O1—C14—C15—N1179.05 (18)
C15—C7—C8—C1313.3 (3)N2—C14—C15—C7179.6 (2)
C6—C7—C8—C13110.8 (2)O1—C14—C15—C70.9 (3)
C15—C7—C8—C9166.00 (17)C8—C7—C15—C1411.7 (3)
C6—C7—C8—C969.9 (2)C6—C7—C15—C14110.8 (2)
C13—C8—C9—O2174.9 (2)C8—C7—C15—N1168.27 (17)
C7—C8—C9—O24.4 (3)C6—C7—C15—N169.2 (2)
C13—C8—C9—C103.3 (3)C14—C15—N1—O4176.39 (19)
C7—C8—C9—C10177.4 (2)C7—C15—N1—O43.6 (3)
O2—C9—C10—C11156.9 (3)C14—C15—N1—O33.9 (3)
C8—C9—C10—C1124.9 (3)C7—C15—N1—O3176.11 (18)
O2—C9—C10—C11'159.0 (6)O1—C14—N2—C164.2 (3)
C8—C9—C10—C11'19.1 (7)C15—C14—N2—C16175.4 (2)
C11'—C10—C11—C1257.4 (6)N2—C14—O1—C13169.49 (18)
C9—C10—C11—C1250.4 (4)C15—C14—O1—C1310.1 (3)
C11—C10—C11'—C1259.2 (7)C8—C13—O1—C148.7 (3)
C9—C10—C11'—C1233.9 (11)C12—C13—O1—C14171.21 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the pyran ring C7/C8/C13/O1/C14/C15.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.90 (2)1.86 (2)2.599 (2)137 (2)
C2—H2···O4i0.932.533.420 (3)160
C10—H10A···Cg1ii0.972.753.515 (2)136
C16—H16B···Cg1iii0.962.763.577 (3)144
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+2, y+2, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H15ClN2O4
Mr334.75
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.0285 (4), 10.8460 (5), 18.2337 (9)
β (°) 94.067 (2)
V3)1583.74 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.35 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.912, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
11848, 2786, 2208
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.119, 1.09
No. of reflections2786
No. of parameters218
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.28

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the pyran ring C7/C8/C13/O1/C14/C15.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.90 (2)1.862 (18)2.599 (2)137.3 (19)
C2—H2···O4i0.932.533.420 (3)160.0
C10—H10A···Cg1ii0.972.753.515 (2)136.0
C16—H16B···Cg1iii0.962.763.577 (3)144.0
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+2, y+2, z; (iii) x+1, y+1, z.
 

Acknowledgements

PN and KS thank Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT Madras, Chennai, India, for the X-ray intensity data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationErcole, F., Davis, T. P. & Evans, R. A. (2009). Macromolecules, 42, 1500–1511.  Web of Science CrossRef CAS
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationGeen, G. R., Evans, J. M. & Vong, A. K. (1996). Comprehensive Heterocyclic Chemistry, 1st ed., edited by A. R. Katrizky, Vol. 3, pp. 469–500. New York: Pergamon.
First citationKhan, K. M., Ambreen, N., Mughal, U. R., Jalil, S., Perveen, S. & Choudhary, M. I. (2010). Eur. J. Med. Chem. 45, 4058–4064.  Web of Science CrossRef CAS PubMed
First citationRaj, T., Bhatia, R. K., Kapur, A., Sharma, M., Saxena, A. K. & Ishar, M. P. S. (2010). Eur. J. Med. Chem. 45, 790–794.  Web of Science CrossRef PubMed CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationSun, R., Wang, K., Wu, D.-D., Huang, W. & Ou, Y.-B. (2012). Acta Cryst. E68, o824.  CSD CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 7| July 2013| Pages o1053-o1054
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds