metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{3-amino-1-carbamo­thioyl-5-[(2-{[(5-methyl-1H-imidazol-3-ium-4-yl)meth­yl]sulfan­yl}eth­yl)amino]-1H-1,2,4-triazol-4-ium} hexa­chloridobismuthate(III) nitrate dihydrate

aDepartment of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
*Correspondence e-mail: acsbd@yahoo.com

(Received 8 May 2013; accepted 13 June 2013; online 19 June 2013)

The asymmetric unit of the title hydrated salt, (C10H18N8S2)2[BiCl6]NO3·2H2O, contains two independent 3-amino-1-carbamo­thioyl-5-[(2-{[(5-methyl-1H-imidazol-3-ium-4-yl)meth­yl]sulfan­yl}eth­yl)amino]-1H-1,2,4-triazol-4-ium cations, one hexa­chloridobismuthate anion, one nitrate anion and two solvent water mol­ecules. The dihedral angles between the imidazole and triazole rings in the cations are 44.7 (3) and 89.4 (3)°. The BiIII ion is coordinated by six chloride ligands in a slightly distorted octa­hedral geometry. In each cation, an intra­molecular N—H⋯S hydrogen bond is observed. In the crystal, N—H⋯Cl, N—H⋯S, N—H⋯O, O—H⋯Cl, O—H⋯S and O—H⋯O hydrogen bonds connect the components into a three-dimensional network. In addtion, ππ stacking inter­actions between inversion-related triazole rings are observed, with a centroid–centroid distance of 3.322 (3) Å

Related literature

For background to hexa­chloridobismuthate(III) complexes with organic cations, see: Laza­rini (1987[Lazarini, F. (1987). Acta Cryst. C43, 637-638.]); Jarraya et al. (1993[Jarraya, S., Salah, A. B., Daoud, A., Rothammel, W. & Burzlaff, H. (1993). Acta Cryst. C49, 1594-1596.]); Battaglia & Corradi (1986[Battaglia, L. P. & Corradi, A. B. (1986). Inorg. Chim. Acta, 121, 131-136.]); Bednarska-Bolek et al. (2000[Bednarska-Bolek, B., Zaleski, J., Bator, G. & Jakubas, R. (2000). J. Phys. Chem. Solids, 61, 1249-1261.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H18N8S2)2[BiCl6]NO3·2H2O

  • Mr = 1148.61

  • Triclinic, [P \overline 1]

  • a = 8.8750 (1) Å

  • b = 14.2860 (2) Å

  • c = 16.6500 (2) Å

  • α = 94.376 (1)°

  • β = 100.717 (1)°

  • γ = 92.167 (1)°

  • V = 2065.24 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.91 mm−1

  • T = 150 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.440, Tmax = 0.440

  • 34173 measured reflections

  • 9432 independent reflections

  • 8522 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.102

  • S = 1.05

  • 9432 reflections

  • 541 parameters

  • 24 restraints

  • Δρmax = 2.72 e Å−3

  • Δρmin = −2.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Cl6i 0.89 (4) 2.54 (3) 3.379 (6) 158 (7)
N2—H2N⋯Cl6ii 0.88 (5) 2.58 (5) 3.406 (5) 156 (6)
N3—H3N⋯S2 0.89 (5) 2.23 (6) 3.019 (6) 148 (7)
N4—H4N⋯O2 0.91 (7) 1.74 (7) 2.608 (7) 160 (7)
N7—H7A⋯S2iii 0.91 (6) 2.46 (7) 3.296 (6) 155 (6)
N7—H7B⋯O1iv 0.90 (4) 1.97 (5) 2.842 (8) 162 (6)
N8—H8A⋯Cl5iv 0.89 (5) 2.83 (6) 3.550 (5) 140 (5)
O1—H11⋯Cl5 0.84 (6) 2.39 (6) 3.138 (5) 149 (6)
N11—H11N⋯O1v 0.89 (2) 1.83 (3) 2.703 (6) 170 (9)
O1—H12⋯Cl4vi 0.85 (6) 2.27 (5) 3.116 (5) 172 (7)
N12—H12N⋯O3ii 0.88 (6) 1.99 (7) 2.835 (6) 162 (6)
N12—H12N⋯O4ii 0.88 (6) 2.58 (6) 3.307 (8) 142 (5)
N13—H13N⋯S4 0.88 (3) 2.27 (6) 3.025 (4) 144 (7)
N14—H14N⋯O3vii 0.87 (6) 1.91 (6) 2.772 (5) 175 (5)
N14—H14N⋯O5vii 0.87 (6) 2.43 (8) 2.960 (7) 120 (7)
N17—H17A⋯S4iii 0.87 (6) 2.60 (6) 3.423 (5) 159 (6)
N17—H17B⋯Cl3iii 0.87 (3) 2.52 (5) 3.337 (5) 158 (6)
N18—H18A⋯Cl2 0.87 (5) 2.56 (7) 3.304 (5) 144 (5)
N18—H18B⋯Cl3 0.88 (4) 2.59 (7) 3.332 (5) 143 (7)
O2—H21⋯Cl4 0.86 (4) 2.62 (6) 3.326 (5) 139 (6)
O2—H21⋯S2iii 0.86 (4) 2.59 (8) 3.168 (5) 126 (7)
O2—H22⋯O4 0.86 (3) 2.52 (5) 3.227 (7) 139 (7)
O2—H22⋯O5 0.86 (3) 1.88 (5) 2.717 (6) 162 (9)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z; (iv) -x+1, -y+1, -z; (v) -x+1, -y, -z+1; (vi) x+1, y, z; (vii) -x, -y+1, -z+1.

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Bruker AXS Inc., Delft, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The hexachlorobismuthate(III) anion, [BiCl6]3–, forms complexes with organic cations in the presence of excess chloride ions (Lazarini, 1987; Jarraya et al., 1993; Battaglia & Corradi, 1986). Cimetidine, N-cyano-N'-methyl-N"-{2-[5-methy-1H-imidazole-4-yl]methylthio-ethyl}-guanidine, consists of three main functional units: a 4,5-disubstituted imidazolic ring, a cysteine and an N-cyanoazamethine or guanidine derivative. The N-cyanoazamethine part of cimetidine reacts with thiosemicarbazide when the reaction is carried out with Bi(NO3)3 in presence of hydrochloric acid. The crystal structure of the title compound is presented herein.

The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit compound, contains of two dicationic ligands, one [BiCl6]3– anion, one NO3- anion and two solvent water molecules. The BiIII ion is coordinated by six chloride ions forming a slightly distorted octahedral configuration with Bi—Cl bond lengths ranging from 2.6312 (13) to 2.7984 (12)Å. The Bi–Cl bond lengths are comparable with the reported values in a related halogenobismuthate (Bednarska-Bolek et al., 2000). The bond angles within the [BiCl6]3– anion of the compound do not suggest any steric interactions are present (Bednarska-Bolek et al., 2000; Jarraya et al., 1993). The dihedral angles between the imidazole and triazole rings in the cations are 44.7 (3) [C1-C3/N1/N2 and N4-N6/C7/C8] and 89.4 (3)° [C11-C13/N11/N12 and C17/C18/N14-N16]. In each cation, an intramolecular N—H···S hydrogen bond is observed. In the crystal, N—H···Cl, N—H···S, N—H···O, O—H···Cl, O—H···S and O—H···O hydrogen bonds connect the components of the structure into a three-dimensional network (Fig. 2). In addtion, ππ stacking interactions with Cg···Cg(1-x, 1-y, -z) = 3.322 (3)Å are observed [Cg is the centroid of the N4/C7/N6/N5/C8 ring].

Related literature top

For background to hexachloridobismuthate(III) complexes with organic cations, see: Lazarini (1987); Jarraya et al. (1993); Battaglia & Corradi (1986); Bednarska-Bolek et al. (2000).

Experimental top

Bismuth nitrate (0.4851 g, 1.0 mmol) was dissolved in 4M hydrochloric acid (30 ml). An ethanolic solution of cimetidine (0.5047 g, 2.0 mmol) and thiosemicarbazide (0.1823 g, 2.0 mmol) were added slowly to the solution with constant stirring. The solution was stirred further for 3 h and then it was filtered and left with slow evaporation of the solvent. Colorless crystals suitable for X-ray analysis separated out from the solution after a week.

Refinement top

H atoms bonded to C atoms were placed in calculated positions [C—H = 0.95 Å, 0.98 Å and 0.99 Å] and refined in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.2Ueq(Cmethyl). H atoms bonded to N and O atoms were refined independently with a common isotropic displacement parameter for each type.

Structure description top

The hexachlorobismuthate(III) anion, [BiCl6]3–, forms complexes with organic cations in the presence of excess chloride ions (Lazarini, 1987; Jarraya et al., 1993; Battaglia & Corradi, 1986). Cimetidine, N-cyano-N'-methyl-N"-{2-[5-methy-1H-imidazole-4-yl]methylthio-ethyl}-guanidine, consists of three main functional units: a 4,5-disubstituted imidazolic ring, a cysteine and an N-cyanoazamethine or guanidine derivative. The N-cyanoazamethine part of cimetidine reacts with thiosemicarbazide when the reaction is carried out with Bi(NO3)3 in presence of hydrochloric acid. The crystal structure of the title compound is presented herein.

The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit compound, contains of two dicationic ligands, one [BiCl6]3– anion, one NO3- anion and two solvent water molecules. The BiIII ion is coordinated by six chloride ions forming a slightly distorted octahedral configuration with Bi—Cl bond lengths ranging from 2.6312 (13) to 2.7984 (12)Å. The Bi–Cl bond lengths are comparable with the reported values in a related halogenobismuthate (Bednarska-Bolek et al., 2000). The bond angles within the [BiCl6]3– anion of the compound do not suggest any steric interactions are present (Bednarska-Bolek et al., 2000; Jarraya et al., 1993). The dihedral angles between the imidazole and triazole rings in the cations are 44.7 (3) [C1-C3/N1/N2 and N4-N6/C7/C8] and 89.4 (3)° [C11-C13/N11/N12 and C17/C18/N14-N16]. In each cation, an intramolecular N—H···S hydrogen bond is observed. In the crystal, N—H···Cl, N—H···S, N—H···O, O—H···Cl, O—H···S and O—H···O hydrogen bonds connect the components of the structure into a three-dimensional network (Fig. 2). In addtion, ππ stacking interactions with Cg···Cg(1-x, 1-y, -z) = 3.322 (3)Å are observed [Cg is the centroid of the N4/C7/N6/N5/C8 ring].

For background to hexachloridobismuthate(III) complexes with organic cations, see: Lazarini (1987); Jarraya et al. (1993); Battaglia & Corradi (1986); Bednarska-Bolek et al. (2000).

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% dispalcement ellipsoids (arbitrary spheres for the H atoms). Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Packing diagram of the complex. Hydrogen bonds are shown by dashed lines.
Bis{3-amino-1-carbamothioyl-5-[(2-{[(5-methyl-1H-imidazol-3-ium-4-yl)methyl]sulfanyl}ethyl)amino]-1H-1,2,4-triazol-4-ium} hexachloridobismuthate(III) nitrate dihydrate top
Crystal data top
(C10H18N8S2)2[BiCl6]NO3·2H2OZ = 2
Mr = 1148.61F(000) = 1136
Triclinic, P1Dx = 1.850 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8750 (1) ÅCell parameters from 9432 reflections
b = 14.2860 (2) Åθ = 2.7–27.5°
c = 16.6500 (2) ŵ = 4.91 mm1
α = 94.376 (1)°T = 150 K
β = 100.717 (1)°Block, colorless
γ = 92.167 (1)°0.20 × 0.20 × 0.20 mm
V = 2065.24 (4) Å3
Data collection top
Nonius KappaCCD
diffractometer
9432 independent reflections
Radiation source: fine-focus sealed tube8522 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1111
Tmin = 0.440, Tmax = 0.440k = 1818
34173 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0527P)2 + 5.0184P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
9432 reflectionsΔρmax = 2.72 e Å3
541 parametersΔρmin = 2.16 e Å3
24 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0014 (3)
Crystal data top
(C10H18N8S2)2[BiCl6]NO3·2H2Oγ = 92.167 (1)°
Mr = 1148.61V = 2065.24 (4) Å3
Triclinic, P1Z = 2
a = 8.8750 (1) ÅMo Kα radiation
b = 14.2860 (2) ŵ = 4.91 mm1
c = 16.6500 (2) ÅT = 150 K
α = 94.376 (1)°0.20 × 0.20 × 0.20 mm
β = 100.717 (1)°
Data collection top
Nonius KappaCCD
diffractometer
9432 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
8522 reflections with I > 2σ(I)
Tmin = 0.440, Tmax = 0.440Rint = 0.061
34173 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04024 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 2.72 e Å3
9432 reflectionsΔρmin = 2.16 e Å3
541 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.94732 (15)0.67239 (9)0.34141 (8)0.0342 (3)
S20.98090 (19)0.58775 (13)0.08391 (10)0.0496 (4)
N11.3722 (6)0.6664 (4)0.5461 (3)0.0407 (11)
N21.1338 (5)0.6703 (3)0.5467 (3)0.0362 (10)
N30.7375 (6)0.5559 (4)0.1852 (3)0.0397 (11)
N40.4915 (6)0.5895 (4)0.1124 (3)0.0395 (11)
N50.5433 (6)0.6162 (4)0.0108 (3)0.0416 (11)
N60.6766 (5)0.5934 (3)0.0442 (3)0.0381 (10)
N70.2906 (7)0.6302 (5)0.0070 (4)0.0582 (15)
N80.8045 (6)0.6170 (4)0.0581 (3)0.0488 (13)
C11.2997 (6)0.6179 (4)0.4738 (3)0.0327 (11)
C21.2710 (8)0.6972 (5)0.5884 (4)0.0447 (14)
H21.29290.73270.64020.054*
C31.1469 (6)0.6205 (4)0.4735 (3)0.0307 (10)
C41.0117 (6)0.5830 (4)0.4118 (3)0.0321 (11)
H4A0.92750.56440.43980.038*
H4B1.03890.52650.38040.038*
C50.7434 (6)0.6431 (4)0.3189 (4)0.0369 (12)
H5A0.70720.63770.37120.044*
H5B0.69050.69530.29170.044*
C60.6977 (6)0.5536 (4)0.2652 (3)0.0397 (13)
H6A0.74850.50100.29270.048*
H6B0.58530.54120.25850.048*
C70.6429 (6)0.5785 (4)0.1187 (3)0.0354 (12)
C80.4379 (7)0.6133 (4)0.0328 (4)0.0430 (13)
C91.3858 (7)0.5787 (5)0.4114 (4)0.0427 (13)
H9A1.40990.62850.37770.064*
H9B1.32300.52800.37640.064*
H9C1.48140.55390.43910.064*
C100.8161 (7)0.6009 (4)0.0190 (4)0.0424 (13)
S30.24517 (18)0.19615 (10)0.86591 (9)0.0416 (3)
S40.32138 (14)0.09271 (11)0.62576 (8)0.0352 (3)
N110.3547 (5)0.1218 (3)0.8769 (3)0.0345 (10)
N120.4499 (5)0.0078 (4)0.8468 (3)0.0376 (10)
N130.0633 (4)0.0708 (3)0.7198 (2)0.0281 (9)
N140.1794 (5)0.0852 (3)0.6379 (2)0.0270 (9)
N150.1160 (4)0.1080 (3)0.5168 (2)0.0277 (9)
N160.0146 (4)0.0950 (3)0.5773 (2)0.0239 (8)
N170.3771 (5)0.1081 (5)0.5248 (3)0.0467 (13)
N180.1552 (5)0.1189 (3)0.4797 (3)0.0315 (9)
C110.3124 (6)0.0522 (4)0.9296 (3)0.0297 (10)
C120.4370 (6)0.0842 (4)0.8284 (3)0.0383 (12)
H12A0.47980.11750.78710.046*
C130.3730 (6)0.0303 (4)0.9106 (3)0.0313 (11)
C140.3565 (7)0.1286 (4)0.9417 (3)0.0368 (12)
H14A0.46000.16000.95990.044*
H14B0.30640.12820.99000.044*
C150.0509 (6)0.1450 (5)0.8563 (4)0.0421 (13)
H15A0.03480.12960.91120.051*
H15B0.02300.19250.83730.051*
C160.0160 (6)0.0566 (4)0.7974 (3)0.0314 (11)
H16A0.07060.00380.82260.038*
H16B0.09560.03980.78720.038*
C170.0274 (5)0.0827 (3)0.6512 (3)0.0222 (9)
C180.2286 (6)0.1011 (4)0.5559 (3)0.0304 (11)
C190.2162 (6)0.0740 (5)0.9913 (3)0.0402 (13)
H19A0.26230.12351.02390.060*
H19B0.11250.09550.96280.060*
H19C0.21080.01731.02740.060*
C200.1598 (5)0.1032 (3)0.5573 (3)0.0253 (9)
Bi10.200467 (18)0.255209 (11)0.278175 (10)0.02225 (8)
Cl10.16339 (17)0.16319 (11)0.13224 (8)0.0416 (3)
Cl20.05587 (14)0.17031 (9)0.30498 (8)0.0328 (3)
Cl30.38963 (14)0.12542 (9)0.34520 (7)0.0301 (3)
Cl40.03748 (16)0.40620 (10)0.23050 (9)0.0392 (3)
Cl50.44926 (16)0.35260 (11)0.24484 (9)0.0454 (3)
Cl60.24345 (15)0.34255 (9)0.43761 (8)0.0341 (3)
O30.3595 (4)0.8967 (3)0.2430 (2)0.0373 (9)
O40.4022 (7)0.7788 (4)0.1648 (4)0.0764 (17)
O50.2846 (7)0.7574 (3)0.2640 (4)0.0723 (16)
N190.3509 (5)0.8126 (3)0.2230 (3)0.0330 (9)
O10.7188 (6)0.3082 (3)0.1521 (3)0.0549 (12)
O20.2936 (6)0.5740 (3)0.2091 (3)0.0565 (12)
H1N1.473 (3)0.679 (5)0.560 (5)0.068*
H2N1.049 (5)0.673 (5)0.567 (4)0.068*
H3N0.831 (4)0.569 (6)0.176 (5)0.068*
H4N0.436 (8)0.573 (6)0.150 (4)0.068*
H7A0.226 (7)0.627 (6)0.043 (4)0.068*
H7B0.270 (9)0.641 (6)0.0466 (18)0.068*
H8A0.711 (4)0.629 (6)0.084 (4)0.068*
H8B0.898 (4)0.623 (6)0.070 (5)0.068*
H11N0.341 (9)0.1839 (15)0.871 (5)0.068*
H12N0.498 (8)0.048 (4)0.822 (4)0.068*
H13N0.160 (3)0.073 (6)0.715 (5)0.068*
H14N0.232 (7)0.089 (6)0.677 (3)0.068*
H17A0.446 (7)0.088 (5)0.551 (4)0.068*
H17B0.414 (8)0.110 (6)0.4731 (16)0.068*
H18A0.068 (5)0.122 (6)0.446 (4)0.068*
H18B0.246 (4)0.127 (6)0.467 (5)0.068*
H110.646 (5)0.338 (5)0.165 (5)0.085*
H120.803 (4)0.334 (5)0.179 (5)0.085*
H210.199 (4)0.554 (5)0.203 (6)0.085*
H220.292 (8)0.6343 (15)0.216 (6)0.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0337 (7)0.0303 (7)0.0368 (7)0.0021 (5)0.0027 (5)0.0041 (5)
S20.0429 (8)0.0642 (11)0.0432 (8)0.0111 (7)0.0087 (7)0.0089 (8)
N10.034 (2)0.047 (3)0.038 (3)0.005 (2)0.001 (2)0.002 (2)
N20.039 (3)0.039 (3)0.033 (2)0.014 (2)0.012 (2)0.000 (2)
N30.038 (3)0.039 (3)0.039 (3)0.000 (2)0.001 (2)0.004 (2)
N40.039 (3)0.039 (3)0.039 (3)0.004 (2)0.006 (2)0.002 (2)
N50.037 (3)0.042 (3)0.044 (3)0.006 (2)0.002 (2)0.003 (2)
N60.036 (2)0.044 (3)0.033 (2)0.002 (2)0.0037 (19)0.003 (2)
N70.041 (3)0.082 (4)0.051 (3)0.014 (3)0.003 (3)0.013 (3)
N80.044 (3)0.061 (4)0.044 (3)0.009 (3)0.009 (2)0.016 (3)
C10.032 (3)0.034 (3)0.032 (3)0.005 (2)0.005 (2)0.005 (2)
C20.055 (4)0.050 (4)0.027 (3)0.014 (3)0.003 (3)0.004 (2)
C30.034 (3)0.028 (3)0.031 (3)0.007 (2)0.007 (2)0.004 (2)
C40.031 (3)0.026 (3)0.039 (3)0.002 (2)0.006 (2)0.001 (2)
C50.030 (3)0.041 (3)0.042 (3)0.007 (2)0.009 (2)0.004 (2)
C60.033 (3)0.047 (3)0.037 (3)0.006 (2)0.000 (2)0.011 (3)
C70.039 (3)0.026 (3)0.040 (3)0.001 (2)0.004 (2)0.001 (2)
C80.043 (3)0.046 (3)0.039 (3)0.004 (3)0.004 (3)0.003 (3)
C90.043 (3)0.052 (4)0.038 (3)0.009 (3)0.017 (3)0.004 (3)
C100.053 (4)0.035 (3)0.039 (3)0.004 (3)0.008 (3)0.003 (2)
S30.0484 (8)0.0323 (7)0.0426 (8)0.0018 (6)0.0043 (6)0.0042 (6)
S40.0211 (6)0.0537 (8)0.0322 (6)0.0046 (5)0.0071 (5)0.0069 (6)
N110.036 (2)0.035 (2)0.034 (2)0.0098 (19)0.0080 (19)0.002 (2)
N120.034 (2)0.047 (3)0.035 (2)0.001 (2)0.0139 (19)0.008 (2)
N130.0219 (19)0.038 (2)0.025 (2)0.0053 (17)0.0041 (16)0.0081 (18)
N140.022 (2)0.036 (2)0.024 (2)0.0007 (16)0.0057 (16)0.0053 (17)
N150.0228 (19)0.038 (2)0.025 (2)0.0043 (17)0.0064 (16)0.0087 (18)
N160.0197 (18)0.028 (2)0.0250 (19)0.0008 (15)0.0055 (15)0.0045 (16)
N170.025 (2)0.084 (4)0.035 (3)0.009 (2)0.009 (2)0.017 (3)
N180.027 (2)0.039 (3)0.032 (2)0.0053 (19)0.0112 (18)0.0116 (19)
C110.025 (2)0.040 (3)0.023 (2)0.001 (2)0.0019 (19)0.005 (2)
C120.039 (3)0.048 (3)0.029 (3)0.011 (2)0.009 (2)0.003 (2)
C130.028 (2)0.039 (3)0.027 (2)0.004 (2)0.006 (2)0.004 (2)
C140.044 (3)0.037 (3)0.028 (3)0.000 (2)0.004 (2)0.001 (2)
C150.034 (3)0.052 (4)0.042 (3)0.009 (3)0.011 (2)0.002 (3)
C160.028 (2)0.043 (3)0.024 (2)0.003 (2)0.0054 (19)0.010 (2)
C170.025 (2)0.020 (2)0.024 (2)0.0003 (17)0.0088 (18)0.0030 (17)
C180.025 (2)0.042 (3)0.026 (2)0.002 (2)0.0066 (19)0.006 (2)
C190.036 (3)0.054 (4)0.035 (3)0.006 (3)0.014 (2)0.009 (3)
C200.025 (2)0.024 (2)0.030 (2)0.0001 (18)0.0120 (19)0.0038 (19)
Bi10.02270 (10)0.02247 (11)0.02244 (11)0.00348 (6)0.00593 (6)0.00206 (6)
Cl10.0499 (8)0.0454 (8)0.0284 (6)0.0034 (6)0.0096 (6)0.0064 (6)
Cl20.0273 (6)0.0376 (7)0.0335 (6)0.0020 (5)0.0070 (5)0.0013 (5)
Cl30.0298 (6)0.0349 (6)0.0288 (6)0.0121 (5)0.0096 (5)0.0087 (5)
Cl40.0394 (7)0.0322 (7)0.0489 (8)0.0130 (5)0.0111 (6)0.0099 (6)
Cl50.0355 (7)0.0524 (9)0.0486 (8)0.0115 (6)0.0085 (6)0.0105 (7)
Cl60.0362 (6)0.0353 (7)0.0301 (6)0.0006 (5)0.0084 (5)0.0050 (5)
O30.034 (2)0.036 (2)0.045 (2)0.0017 (16)0.0146 (17)0.0069 (17)
O40.104 (4)0.052 (3)0.089 (4)0.002 (3)0.065 (4)0.011 (3)
O50.109 (4)0.037 (3)0.084 (4)0.009 (3)0.056 (3)0.005 (3)
N190.032 (2)0.037 (3)0.033 (2)0.0059 (18)0.0158 (18)0.0033 (19)
O10.049 (3)0.048 (3)0.063 (3)0.009 (2)0.003 (2)0.002 (2)
O20.065 (3)0.048 (3)0.060 (3)0.003 (2)0.022 (3)0.004 (2)
Geometric parameters (Å, º) top
S1—C51.805 (5)N12—C131.388 (7)
S1—C41.834 (5)N12—H12N0.88 (2)
S2—C101.676 (6)N13—C171.296 (6)
N1—C21.310 (8)N13—C161.456 (6)
N1—C11.376 (7)N13—H13N0.87 (2)
N1—H1N0.88 (2)N14—C171.328 (6)
N2—C21.312 (8)N14—C181.391 (6)
N2—C31.389 (7)N14—H14N0.87 (2)
N2—H2N0.88 (2)N15—C181.296 (6)
N3—C71.327 (7)N15—N161.415 (5)
N3—C61.443 (7)N16—C171.372 (6)
N3—H3N0.89 (2)N16—C201.393 (6)
N4—C71.345 (7)N17—C181.333 (7)
N4—C81.393 (8)N17—H17A0.87 (2)
N4—H4N0.90 (2)N17—H17B0.86 (2)
N5—C81.288 (8)N18—C201.320 (6)
N5—N61.421 (7)N18—H18A0.87 (2)
N6—C71.359 (7)N18—H18B0.88 (2)
N6—C101.382 (8)C11—C131.360 (7)
N7—C81.336 (8)C11—C191.494 (7)
N7—H7A0.90 (2)C12—H12A0.9500
N7—H7B0.90 (2)C13—C141.482 (8)
N8—C101.308 (8)C14—H14A0.9900
N8—H8A0.89 (2)C14—H14B0.9900
N8—H8B0.89 (2)C15—C161.523 (8)
C1—C31.356 (7)C15—H15A0.9900
C1—C91.488 (8)C15—H15B0.9900
C2—H20.9500C16—H16A0.9900
C3—C41.480 (7)C16—H16B0.9900
C4—H4A0.9900C19—H19A0.9800
C4—H4B0.9900C19—H19B0.9800
C5—C61.499 (8)C19—H19C0.9800
C5—H5A0.9900Bi1—Cl12.6312 (13)
C5—H5B0.9900Bi1—Cl22.6641 (12)
C6—H6A0.9900Bi1—Cl32.7122 (11)
C6—H6B0.9900Bi1—Cl42.7286 (13)
C9—H9A0.9800Bi1—Cl52.7314 (13)
C9—H9B0.9800Bi1—Cl62.7984 (12)
C9—H9C0.9800O3—N191.218 (6)
S3—C141.815 (6)O4—N191.220 (6)
S3—C151.822 (6)O5—N191.276 (6)
S4—C201.677 (5)O1—H110.85 (2)
N11—C121.315 (7)O1—H120.85 (2)
N11—C111.385 (7)O2—H210.86 (2)
N11—H11N0.89 (2)O2—H220.86 (2)
N12—C121.323 (8)
C5—S1—C4100.1 (3)C17—N14—C18107.7 (4)
C2—N1—C1110.3 (5)C17—N14—H14N123 (5)
C2—N1—H1N125 (5)C18—N14—H14N128 (5)
C1—N1—H1N125 (5)C18—N15—N16103.3 (4)
C2—N2—C3109.7 (5)C17—N16—C20130.2 (4)
C2—N2—H2N124 (5)C17—N16—N15110.6 (4)
C3—N2—H2N125 (5)C20—N16—N15119.0 (4)
C7—N3—C6124.6 (5)C18—N17—H17A120 (5)
C7—N3—H3N105 (5)C18—N17—H17B124 (5)
C6—N3—H3N125 (5)H17A—N17—H17B111 (7)
C7—N4—C8106.4 (5)C20—N18—H18A122 (5)
C7—N4—H4N124 (5)C20—N18—H18B114 (5)
C8—N4—H4N128 (5)H18A—N18—H18B124 (7)
C8—N5—N6103.1 (5)C13—C11—N11106.1 (4)
C7—N6—C10130.8 (5)C13—C11—C19132.0 (5)
C7—N6—N5110.7 (5)N11—C11—C19121.9 (5)
C10—N6—N5117.9 (5)N11—C12—N12108.3 (5)
C8—N7—H7A118 (5)N11—C12—H12A125.8
C8—N7—H7B112 (5)N12—C12—H12A125.8
H7A—N7—H7B130 (7)C11—C13—N12106.5 (5)
C10—N8—H8A116 (5)C11—C13—C14130.8 (5)
C10—N8—H8B110 (5)N12—C13—C14122.5 (5)
H8A—N8—H8B134 (7)C13—C14—S3113.3 (4)
C3—C1—N1106.1 (5)C13—C14—H14A108.9
C3—C1—C9131.6 (5)S3—C14—H14A108.9
N1—C1—C9122.2 (5)C13—C14—H14B108.9
N1—C2—N2107.9 (5)S3—C14—H14B108.9
N1—C2—H2126.0H14A—C14—H14B107.7
N2—C2—H2126.0C16—C15—S3114.0 (4)
C1—C3—N2106.0 (5)C16—C15—H15A108.8
C1—C3—C4131.4 (5)S3—C15—H15A108.8
N2—C3—C4122.6 (5)C16—C15—H15B108.8
C3—C4—S1110.1 (4)S3—C15—H15B108.8
C3—C4—H4A109.6H15A—C15—H15B107.6
S1—C4—H4A109.6N13—C16—C15111.0 (4)
C3—C4—H4B109.6N13—C16—H16A109.4
S1—C4—H4B109.6C15—C16—H16A109.4
H4A—C4—H4B108.1N13—C16—H16B109.4
C6—C5—S1114.4 (4)C15—C16—H16B109.4
C6—C5—H5A108.7H16A—C16—H16B108.0
S1—C5—H5A108.7N13—C17—N14127.2 (4)
C6—C5—H5B108.7N13—C17—N16126.8 (4)
S1—C5—H5B108.7N14—C17—N16106.0 (4)
H5A—C5—H5B107.6N15—C18—N17126.3 (5)
N3—C6—C5113.2 (5)N15—C18—N14112.5 (4)
N3—C6—H6A108.9N17—C18—N14121.2 (4)
C5—C6—H6A108.9C11—C19—H19A109.5
N3—C6—H6B108.9C11—C19—H19B109.5
C5—C6—H6B108.9H19A—C19—H19B109.5
H6A—C6—H6B107.8C11—C19—H19C109.5
N3—C7—N4125.6 (5)H19A—C19—H19C109.5
N3—C7—N6128.0 (5)H19B—C19—H19C109.5
N4—C7—N6106.4 (5)N18—C20—N16113.0 (4)
N5—C8—N7125.2 (6)N18—C20—S4124.6 (4)
N5—C8—N4113.3 (5)N16—C20—S4122.4 (4)
N7—C8—N4121.4 (6)Cl1—Bi1—Cl290.41 (4)
C1—C9—H9A109.5Cl1—Bi1—Cl391.37 (4)
C1—C9—H9B109.5Cl2—Bi1—Cl395.21 (4)
H9A—C9—H9B109.5Cl1—Bi1—Cl496.86 (5)
C1—C9—H9C109.5Cl2—Bi1—Cl489.39 (4)
H9A—C9—H9C109.5Cl3—Bi1—Cl4170.54 (4)
H9B—C9—H9C109.5Cl1—Bi1—Cl589.31 (5)
N8—C10—N6113.9 (6)Cl2—Bi1—Cl5175.50 (4)
N8—C10—S2125.2 (5)Cl3—Bi1—Cl589.29 (4)
N6—C10—S2120.9 (4)Cl4—Bi1—Cl586.18 (5)
C14—S3—C15103.0 (3)Cl1—Bi1—Cl6176.47 (4)
C12—N11—C11109.9 (5)Cl2—Bi1—Cl688.29 (4)
C12—N11—H11N116 (5)Cl3—Bi1—Cl685.48 (4)
C11—N11—H11N134 (5)Cl4—Bi1—Cl686.40 (4)
C12—N12—C13109.2 (5)Cl5—Bi1—Cl692.24 (4)
C12—N12—H12N125 (5)O3—N19—O4122.6 (5)
C13—N12—H12N126 (5)O3—N19—O5119.0 (4)
C17—N13—C16125.9 (4)O4—N19—O5118.5 (5)
C17—N13—H13N112 (5)H11—O1—H12109 (3)
C16—N13—H13N122 (5)H21—O2—H22105 (3)
C8—N5—N6—C70.3 (6)C18—N15—N16—C171.2 (5)
C8—N5—N6—C10172.7 (5)C18—N15—N16—C20176.5 (4)
C2—N1—C1—C30.1 (7)C12—N11—C11—C130.2 (6)
C2—N1—C1—C9177.0 (5)C12—N11—C11—C19179.2 (5)
C1—N1—C2—N20.3 (7)C11—N11—C12—N120.3 (6)
C3—N2—C2—N10.5 (7)C13—N12—C12—N110.3 (6)
N1—C1—C3—N20.4 (6)N11—C11—C13—N120.1 (5)
C9—C1—C3—N2176.9 (6)C19—C11—C13—N12178.9 (5)
N1—C1—C3—C4178.3 (5)N11—C11—C13—C14174.8 (5)
C9—C1—C3—C41.8 (10)C19—C11—C13—C144.1 (10)
C2—N2—C3—C10.6 (6)C12—N12—C13—C110.2 (6)
C2—N2—C3—C4178.2 (5)C12—N12—C13—C14175.6 (5)
C1—C3—C4—S191.1 (6)C11—C13—C14—S3110.4 (6)
N2—C3—C4—S187.4 (5)N12—C13—C14—S363.7 (6)
C5—S1—C4—C3147.7 (4)C15—S3—C14—C1370.6 (5)
C4—S1—C5—C671.8 (5)C14—S3—C15—C1683.8 (5)
C7—N3—C6—C594.9 (6)C17—N13—C16—C15105.3 (6)
S1—C5—C6—N361.7 (6)S3—C15—C16—N1348.5 (6)
C6—N3—C7—N49.9 (9)C16—N13—C17—N140.8 (8)
C6—N3—C7—N6171.2 (5)C16—N13—C17—N16179.1 (5)
C8—N4—C7—N3179.7 (6)C18—N14—C17—N13178.9 (5)
C8—N4—C7—N61.2 (6)C18—N14—C17—N161.2 (5)
C10—N6—C7—N38.8 (10)C20—N16—C17—N134.0 (8)
N5—N6—C7—N3180.0 (5)N15—N16—C17—N13178.6 (5)
C10—N6—C7—N4172.1 (6)C20—N16—C17—N14176.1 (5)
N5—N6—C7—N40.9 (6)N15—N16—C17—N141.5 (5)
N6—N5—C8—N7179.9 (6)N16—N15—C18—N17179.7 (6)
N6—N5—C8—N40.5 (7)N16—N15—C18—N140.4 (6)
C7—N4—C8—N51.1 (7)C17—N14—C18—N150.5 (6)
C7—N4—C8—N7179.3 (6)C17—N14—C18—N17179.3 (5)
C7—N6—C10—N8179.0 (6)C17—N16—C20—N18177.0 (5)
N5—N6—C10—N88.3 (8)N15—N16—C20—N182.8 (6)
C7—N6—C10—S22.1 (9)C17—N16—C20—S43.7 (7)
N5—N6—C10—S2172.8 (4)N15—N16—C20—S4177.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl6i0.89 (4)2.54 (3)3.379 (6)158 (7)
N2—H2N···Cl6ii0.88 (5)2.58 (5)3.406 (5)156 (6)
N3—H3N···S20.89 (5)2.23 (6)3.019 (6)148 (7)
N4—H4N···O20.91 (7)1.74 (7)2.608 (7)160 (7)
N7—H7A···S2iii0.91 (6)2.46 (7)3.296 (6)155 (6)
N7—H7B···O1iv0.90 (4)1.97 (5)2.842 (8)162 (6)
N8—H8A···Cl5iv0.89 (5)2.83 (6)3.550 (5)140 (5)
O1—H11···Cl50.84 (6)2.39 (6)3.138 (5)149 (6)
N11—H11N···O1v0.89 (2)1.83 (3)2.703 (6)170 (9)
O1—H12···Cl4vi0.85 (6)2.27 (5)3.116 (5)172 (7)
N12—H12N···O3ii0.88 (6)1.99 (7)2.835 (6)162 (6)
N12—H12N···O4ii0.88 (6)2.58 (6)3.307 (8)142 (5)
N13—H13N···S40.88 (3)2.27 (6)3.025 (4)144 (7)
N14—H14N···O3vii0.87 (6)1.91 (6)2.772 (5)175 (5)
N14—H14N···O5vii0.87 (6)2.43 (8)2.960 (7)120 (7)
N17—H17A···S4iii0.87 (6)2.60 (6)3.423 (5)159 (6)
N17—H17B···Cl3iii0.87 (3)2.52 (5)3.337 (5)158 (6)
N18—H18A···Cl20.87 (5)2.56 (7)3.304 (5)144 (5)
N18—H18B···Cl30.88 (4)2.59 (7)3.332 (5)143 (7)
O2—H21···Cl40.86 (4)2.62 (6)3.326 (5)139 (6)
O2—H21···S2iii0.86 (4)2.59 (8)3.168 (5)126 (7)
O2—H22···O40.86 (3)2.52 (5)3.227 (7)139 (7)
O2—H22···O50.86 (3)1.88 (5)2.717 (6)162 (9)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x+1, y+1, z; (v) x+1, y, z+1; (vi) x+1, y, z; (vii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C10H18N8S2)2[BiCl6]NO3·2H2O
Mr1148.61
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)8.8750 (1), 14.2860 (2), 16.6500 (2)
α, β, γ (°)94.376 (1), 100.717 (1), 92.167 (1)
V3)2065.24 (4)
Z2
Radiation typeMo Kα
µ (mm1)4.91
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.440, 0.440
No. of measured, independent and
observed [I > 2σ(I)] reflections
34173, 9432, 8522
Rint0.061
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.102, 1.05
No. of reflections9432
No. of parameters541
No. of restraints24
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.72, 2.16

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl6i0.89 (4)2.54 (3)3.379 (6)158 (7)
N2—H2N···Cl6ii0.88 (5)2.58 (5)3.406 (5)156 (6)
N3—H3N···S20.89 (5)2.23 (6)3.019 (6)148 (7)
N4—H4N···O20.91 (7)1.74 (7)2.608 (7)160 (7)
N7—H7A···S2iii0.91 (6)2.46 (7)3.296 (6)155 (6)
N7—H7B···O1iv0.90 (4)1.97 (5)2.842 (8)162 (6)
N8—H8A···Cl5iv0.89 (5)2.83 (6)3.550 (5)140 (5)
O1—H11···Cl50.84 (6)2.39 (6)3.138 (5)149 (6)
N11—H11N···O1v0.89 (2)1.83 (3)2.703 (6)170 (9)
O1—H12···Cl4vi0.85 (6)2.27 (5)3.116 (5)172 (7)
N12—H12N···O3ii0.88 (6)1.99 (7)2.835 (6)162 (6)
N12—H12N···O4ii0.88 (6)2.58 (6)3.307 (8)142 (5)
N13—H13N···S40.88 (3)2.27 (6)3.025 (4)144 (7)
N14—H14N···O3vii0.87 (6)1.91 (6)2.772 (5)175 (5)
N14—H14N···O5vii0.87 (6)2.43 (8)2.960 (7)120 (7)
N17—H17A···S4iii0.87 (6)2.60 (6)3.423 (5)159 (6)
N17—H17B···Cl3iii0.87 (3)2.52 (5)3.337 (5)158 (6)
N18—H18A···Cl20.87 (5)2.56 (7)3.304 (5)144 (5)
N18—H18B···Cl30.88 (4)2.59 (7)3.332 (5)143 (7)
O2—H21···Cl40.86 (4)2.62 (6)3.326 (5)139 (6)
O2—H21···S2iii0.86 (4)2.59 (8)3.168 (5)126 (7)
O2—H22···O40.86 (3)2.52 (5)3.227 (7)139 (7)
O2—H22···O50.86 (3)1.88 (5)2.717 (6)162 (9)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x+1, y+1, z; (v) x+1, y, z+1; (vi) x+1, y, z; (vii) x, y+1, z+1.
 

Acknowledgements

The author acknowledges the School of Chemistry, Cardiff University, Wales.

References

First citationBattaglia, L. P. & Corradi, A. B. (1986). Inorg. Chim. Acta, 121, 131–136.  CSD CrossRef CAS Web of Science Google Scholar
First citationBednarska-Bolek, B., Zaleski, J., Bator, G. & Jakubas, R. (2000). J. Phys. Chem. Solids, 61, 1249–1261.  CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Bruker AXS Inc., Delft, The Netherlands.  Google Scholar
First citationJarraya, S., Salah, A. B., Daoud, A., Rothammel, W. & Burzlaff, H. (1993). Acta Cryst. C49, 1594–1596.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLazarini, F. (1987). Acta Cryst. C43, 637–638.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds