organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(3-Ethyl­phen­yl)carbamo­thio­yl]-2,2-di­phenyl­acetamide

aDepartment of Chemical Sciences, Faculty of Science and Technology, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Terengganu, Malaysia, and bSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 10 May 2013; accepted 23 May 2013; online 8 June 2013)

In the title mol­ecule, C23H22N2OS, the di­phenyl­acetyl and ethyl­benzene groups adopt a transcis conformation, respectively, with respect to the S atom across the (S=)C—N bonds. This conformation is stabilized by an intra­molecular N—H⋯O hydrogen bond and a weak C—H⋯S hydrogen bond. The ethyl-substituted benzene ring forms dihedral angles of 87.53 (15) and 73.94 (15)° with the phenyl rings. In the crystal, N—H⋯O hydrogen bonds link mol­ecules into chains along [100]. A weak C—H⋯π inter­action is also observed.

Related literature

For the biological activity of carbonyl­thio­urea derivatives, see: Zhong et al. (2008[Zhong, Z., Xing, R., Liu, S., Wang, L., Cai, S. & Li, P. (2008). Carbohydr. Res. 343, 566-570.]); Saeed et al. (2010[Saeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323-1331.]). For related structures, see: Yusof et al. (2012a[Yusof, M. S. M., Mutalib, S. F. A., Arshad, S. & Razak, I. A. (2012a). Acta Cryst. E68, o982.],b[Yusof, M. S. M., Arshad, S., Razak, I. A. & Rahman, A. A. (2012b). Acta Cryst. E68, o2670.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For standard bond lenths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C23H22N2OS

  • Mr = 374.49

  • Orthorhombic, P n a 21

  • a = 10.0608 (2) Å

  • b = 17.9092 (5) Å

  • c = 10.8495 (3) Å

  • V = 1954.87 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 100 K

  • 0.26 × 0.23 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.955, Tmax = 0.983

  • 11560 measured reflections

  • 4121 independent reflections

  • 2885 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.098

  • S = 0.99

  • 4121 reflections

  • 253 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1761 Friedel pairs

  • Flack parameter: 0.17 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1 0.90 (3) 1.82 (3) 2.630 (3) 148 (3)
C21—H21A⋯S1 0.95 2.61 3.255 (3) 126
N1—H1N1⋯O1i 0.82 (3) 2.25 (3) 3.023 (3) 157 (3)
C7—H7ACgii 1.00 2.87 3.844 (3) 166
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) [-x-{\script{1\over 2}}, y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Carbonylthiourea derivatives have been explored because they are reported to posses biological activities such as antibacterial, anti-fungal and antiviral (Zhong et al., 2008; Saeed et al., 2010). The crystal structure of the title compound is presented herein.

The molecular structure is shown in Fig. 1. The diphenylacetyl and ethylbenzene groups adopt a trans-cis configuration, respectively, with respect to the sulfur atom across the (S)C–N bonds. Intramolecular N2—H1N2···O1 and C21—H21A···S1 hydrogen bonds result in two S(6) graph-set motifs (Bernstein et al., 1995). The ethyl-substituted benzene ring (C16–C21) forms dihedral angles of 87.53 (15) and 73.94 (15)°, respectively with the C1–C6 and C8–C13 rings. The bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to related structures (Yusof et al., 2012a,b).

In the crystal molecules are linked into one-dimensional chains along the [100] via intermolecular N1—H1N1···O16i hydrogen bonds (Table 1). In addition, a weak C7—H7A···Cgii interaction is observed (Cg is the centroid of C8–C13).

Related literature top

For the biological activity of carbonylthiourea derivatives, see: Zhong et al. (2008); Saeed et al. (2010). For related structures, see: Yusof et al. (2012a,b). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For standard bond lenths, see: Allen et al. (1987).

Experimental top

An acetone (30 ml) solution of 3-ethylaniline (1.63 g, 13.5 mmol) was added to a round-bottom flask containing 2,2-diphenylacetyl chloride (3.10 g, 13.5 mmol) and ammonium thiocyanate (1.03 g, 13.5 mmol). The mixture was refluxed for 2.5h then filtered off and left to evaporate at room temperature. The colourless precipitate obtained was washed with water and cold ethanol. Colourless crystals suitable for X-ray analysis were obtained by recrystallization of the precipitate in DMSO.

Refinement top

N-bound H atom were located in difference maps and refined freely, [N–H = 0.82 (3) and 0.90 (3) Å]. The remaining H atoms were positioned geometrically [C–H = 0.95–1.00 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl group. In the final refinement one outlier was omitted (1 2 0).

Structure description top

Carbonylthiourea derivatives have been explored because they are reported to posses biological activities such as antibacterial, anti-fungal and antiviral (Zhong et al., 2008; Saeed et al., 2010). The crystal structure of the title compound is presented herein.

The molecular structure is shown in Fig. 1. The diphenylacetyl and ethylbenzene groups adopt a trans-cis configuration, respectively, with respect to the sulfur atom across the (S)C–N bonds. Intramolecular N2—H1N2···O1 and C21—H21A···S1 hydrogen bonds result in two S(6) graph-set motifs (Bernstein et al., 1995). The ethyl-substituted benzene ring (C16–C21) forms dihedral angles of 87.53 (15) and 73.94 (15)°, respectively with the C1–C6 and C8–C13 rings. The bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to related structures (Yusof et al., 2012a,b).

In the crystal molecules are linked into one-dimensional chains along the [100] via intermolecular N1—H1N1···O16i hydrogen bonds (Table 1). In addition, a weak C7—H7A···Cgii interaction is observed (Cg is the centroid of C8–C13).

For the biological activity of carbonylthiourea derivatives, see: Zhong et al. (2008); Saeed et al. (2010). For related structures, see: Yusof et al. (2012a,b). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For standard bond lenths, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound shown with 50% probability displacement ellipsoids. Dashed lines represent intramolecular hydrogen bonds.
[Figure 2] Fig. 2. The crystal packing of the title compound. The H atoms not involved in the intermolecular hydrogen bonds (dashed lines) have been omitted for clarity.
N-[(3-Ethylphenyl)carbamothioyl]-2,2-diphenylacetamide top
Crystal data top
C23H22N2OSF(000) = 792
Mr = 374.49Dx = 1.272 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2145 reflections
a = 10.0608 (2) Åθ = 3.0–32.6°
b = 17.9092 (5) ŵ = 0.18 mm1
c = 10.8495 (3) ÅT = 100 K
V = 1954.87 (9) Å3Plate, colourless
Z = 40.26 × 0.23 × 0.09 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4121 independent reflections
Radiation source: fine-focus sealed tube2885 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
φ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1312
Tmin = 0.955, Tmax = 0.983k = 2319
11560 measured reflectionsl = 1314
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0368P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
4121 reflectionsΔρmax = 0.44 e Å3
253 parametersΔρmin = 0.32 e Å3
1 restraintAbsolute structure: Flack (1983), 1761 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.17 (9)
Crystal data top
C23H22N2OSV = 1954.87 (9) Å3
Mr = 374.49Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 10.0608 (2) ŵ = 0.18 mm1
b = 17.9092 (5) ÅT = 100 K
c = 10.8495 (3) Å0.26 × 0.23 × 0.09 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4121 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2885 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.983Rint = 0.071
11560 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098Δρmax = 0.44 e Å3
S = 0.99Δρmin = 0.32 e Å3
4121 reflectionsAbsolute structure: Flack (1983), 1761 Friedel pairs
253 parametersAbsolute structure parameter: 0.17 (9)
1 restraint
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.31660 (6)0.86772 (5)0.55685 (8)0.0304 (2)
O10.67282 (17)0.76358 (11)0.36156 (18)0.0183 (5)
N10.4543 (2)0.79237 (14)0.3925 (2)0.0167 (6)
N20.5813 (2)0.84342 (13)0.5464 (2)0.0171 (6)
C10.4471 (3)0.60946 (17)0.3775 (3)0.0228 (8)
H1A0.51400.62750.43170.027*
C20.3680 (3)0.54945 (18)0.4134 (3)0.0273 (8)
H2A0.38060.52700.49190.033*
C30.2716 (3)0.52269 (19)0.3353 (3)0.0288 (9)
H3A0.21730.48190.35990.035*
C40.2539 (3)0.55506 (19)0.2211 (3)0.0267 (8)
H4A0.18790.53620.16670.032*
C50.3322 (3)0.61505 (17)0.1855 (3)0.0218 (7)
H5A0.31930.63730.10690.026*
C60.4296 (3)0.64289 (17)0.2643 (3)0.0159 (7)
C70.5123 (3)0.70924 (15)0.2215 (3)0.0151 (6)
H7A0.45350.74100.16890.018*
C80.6323 (3)0.68784 (16)0.1434 (3)0.0153 (7)
C90.6652 (3)0.73113 (17)0.0418 (3)0.0228 (7)
H9A0.61240.77340.02170.027*
C100.7742 (3)0.7136 (2)0.0309 (3)0.0269 (8)
H10A0.79610.74400.09970.032*
C110.8512 (3)0.65166 (19)0.0030 (3)0.0260 (8)
H11A0.92520.63900.05320.031*
C120.8195 (3)0.60861 (19)0.0980 (3)0.0289 (8)
H12A0.87250.56640.11800.035*
C130.7102 (3)0.62655 (18)0.1710 (3)0.0229 (7)
H13A0.68910.59640.24040.028*
C140.5563 (3)0.75715 (16)0.3310 (3)0.0133 (6)
C150.4590 (3)0.83515 (16)0.5009 (3)0.0161 (7)
C160.6292 (3)0.87797 (16)0.6550 (3)0.0174 (7)
C170.7605 (3)0.86083 (17)0.6841 (3)0.0228 (8)
H17A0.80720.82630.63360.027*
C180.8250 (3)0.89224 (18)0.7834 (3)0.0262 (8)
C190.7545 (3)0.94264 (19)0.8556 (3)0.0290 (8)
H19A0.79690.96580.92380.035*
C200.6235 (3)0.95954 (19)0.8292 (3)0.0279 (8)
H20A0.57630.99340.88050.034*
C210.5598 (3)0.92747 (17)0.7284 (3)0.0215 (7)
H21A0.46990.93950.71030.026*
C220.9695 (3)0.8747 (2)0.8103 (4)0.0425 (11)
H22A0.97780.86210.89890.051*
H22B1.02250.92040.79560.051*
C231.0305 (3)0.8111 (2)0.7353 (3)0.0440 (11)
H23A1.12300.80360.76080.066*
H23B1.02770.82390.64750.066*
H23C0.97990.76520.74950.066*
H1N10.379 (3)0.7853 (15)0.366 (3)0.019 (9)*
H1N20.640 (3)0.8181 (17)0.500 (3)0.025 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0143 (3)0.0422 (5)0.0348 (5)0.0050 (4)0.0033 (4)0.0157 (5)
O10.0112 (9)0.0225 (12)0.0212 (11)0.0009 (9)0.0011 (10)0.0068 (10)
N10.0095 (12)0.0191 (15)0.0214 (15)0.0001 (11)0.0041 (12)0.0051 (12)
N20.0100 (11)0.0222 (14)0.0191 (13)0.0018 (10)0.0008 (13)0.0076 (14)
C10.0232 (17)0.0190 (19)0.0263 (19)0.0023 (14)0.0034 (15)0.0008 (16)
C20.035 (2)0.025 (2)0.0213 (17)0.0008 (16)0.0088 (16)0.0028 (17)
C30.0222 (16)0.026 (2)0.039 (2)0.0070 (14)0.0067 (18)0.0000 (18)
C40.0216 (16)0.027 (2)0.0316 (19)0.0109 (15)0.0075 (16)0.0021 (18)
C50.0221 (16)0.025 (2)0.0177 (16)0.0007 (14)0.0055 (14)0.0040 (15)
C60.0173 (15)0.0175 (18)0.0130 (15)0.0045 (13)0.0037 (13)0.0005 (14)
C70.0157 (14)0.0151 (16)0.0144 (15)0.0010 (12)0.0018 (13)0.0006 (14)
C80.0161 (14)0.0185 (17)0.0114 (15)0.0049 (13)0.0016 (13)0.0035 (14)
C90.0164 (15)0.0286 (18)0.0233 (17)0.0023 (13)0.0078 (15)0.0042 (17)
C100.0249 (17)0.037 (2)0.0183 (18)0.0127 (15)0.0014 (15)0.0005 (17)
C110.0171 (15)0.035 (2)0.0259 (19)0.0096 (15)0.0067 (15)0.0141 (18)
C120.0235 (17)0.0252 (19)0.038 (2)0.0031 (15)0.0038 (17)0.0054 (17)
C130.0240 (16)0.0197 (18)0.0251 (18)0.0020 (13)0.0051 (14)0.0009 (16)
C140.0157 (13)0.0101 (16)0.0140 (14)0.0014 (12)0.0021 (13)0.0044 (13)
C150.0142 (14)0.0149 (17)0.0192 (16)0.0001 (12)0.0033 (13)0.0034 (15)
C160.0176 (14)0.0153 (17)0.0192 (17)0.0038 (13)0.0002 (14)0.0003 (15)
C170.0189 (15)0.0226 (19)0.0269 (18)0.0020 (14)0.0027 (15)0.0025 (16)
C180.0278 (16)0.0238 (19)0.0269 (18)0.0064 (15)0.0091 (16)0.0055 (17)
C190.044 (2)0.025 (2)0.0185 (16)0.0138 (17)0.0059 (17)0.0016 (17)
C200.0384 (18)0.025 (2)0.0202 (17)0.0013 (16)0.0034 (17)0.0042 (16)
C210.0225 (15)0.0230 (19)0.0190 (16)0.0021 (14)0.0013 (15)0.0007 (16)
C220.036 (2)0.038 (2)0.053 (3)0.0038 (18)0.024 (2)0.004 (2)
C230.0202 (18)0.086 (3)0.025 (2)0.004 (2)0.0051 (16)0.003 (2)
Geometric parameters (Å, º) top
S1—C151.662 (3)C9—H9A0.9500
O1—C141.224 (3)C10—C111.386 (5)
N1—C141.377 (3)C10—H10A0.9500
N1—C151.404 (4)C11—C121.378 (4)
N1—H1N10.82 (3)C11—H11A0.9500
N2—C151.334 (3)C12—C131.393 (4)
N2—C161.416 (4)C12—H12A0.9500
N2—H1N20.90 (3)C13—H13A0.9500
C1—C61.378 (4)C16—C211.381 (4)
C1—C21.393 (4)C16—C171.391 (4)
C1—H1A0.9500C17—C181.379 (4)
C2—C31.374 (4)C17—H17A0.9500
C2—H2A0.9500C18—C191.389 (5)
C3—C41.380 (5)C18—C221.516 (4)
C3—H3A0.9500C19—C201.383 (4)
C4—C51.387 (4)C19—H19A0.9500
C4—H4A0.9500C20—C211.392 (4)
C5—C61.392 (4)C20—H20A0.9500
C5—H5A0.9500C21—H21A0.9500
C6—C71.523 (4)C22—C231.528 (5)
C7—C81.524 (4)C22—H22A0.9900
C7—C141.531 (4)C22—H22B0.9900
C7—H7A1.0000C23—H23A0.9800
C8—C131.382 (4)C23—H23B0.9800
C8—C91.388 (4)C23—H23C0.9800
C9—C101.387 (4)
C14—N1—C15129.1 (2)C11—C12—C13120.4 (3)
C14—N1—H1N1117 (2)C11—C12—H12A119.8
C15—N1—H1N1114 (2)C13—C12—H12A119.8
C15—N2—C16132.1 (3)C8—C13—C12120.5 (3)
C15—N2—H1N2109.9 (18)C8—C13—H13A119.7
C16—N2—H1N2117.7 (18)C12—C13—H13A119.7
C6—C1—C2120.7 (3)O1—C14—N1122.6 (3)
C6—C1—H1A119.6O1—C14—C7122.7 (2)
C2—C1—H1A119.6N1—C14—C7114.7 (2)
C3—C2—C1120.0 (3)N2—C15—N1113.7 (2)
C3—C2—H2A120.0N2—C15—S1128.4 (2)
C1—C2—H2A120.0N1—C15—S1117.9 (2)
C2—C3—C4119.9 (3)C21—C16—C17119.4 (3)
C2—C3—H3A120.0C21—C16—N2126.0 (3)
C4—C3—H3A120.0C17—C16—N2114.5 (3)
C3—C4—C5120.1 (3)C18—C17—C16122.3 (3)
C3—C4—H4A119.9C18—C17—H17A118.9
C5—C4—H4A119.9C16—C17—H17A118.9
C4—C5—C6120.4 (3)C17—C18—C19117.7 (3)
C4—C5—H5A119.8C17—C18—C22121.2 (3)
C6—C5—H5A119.8C19—C18—C22121.0 (3)
C1—C6—C5118.8 (3)C20—C19—C18120.8 (3)
C1—C6—C7122.7 (3)C20—C19—H19A119.6
C5—C6—C7118.5 (3)C18—C19—H19A119.6
C6—C7—C8114.0 (2)C19—C20—C21120.7 (3)
C6—C7—C14111.0 (2)C19—C20—H20A119.6
C8—C7—C14110.1 (2)C21—C20—H20A119.6
C6—C7—H7A107.1C16—C21—C20119.0 (3)
C8—C7—H7A107.1C16—C21—H21A120.5
C14—C7—H7A107.1C20—C21—H21A120.5
C13—C8—C9118.7 (3)C18—C22—C23115.9 (3)
C13—C8—C7121.9 (3)C18—C22—H22A108.3
C9—C8—C7119.4 (3)C23—C22—H22A108.3
C10—C9—C8120.9 (3)C18—C22—H22B108.3
C10—C9—H9A119.5C23—C22—H22B108.3
C8—C9—H9A119.5H22A—C22—H22B107.4
C11—C10—C9120.0 (3)C22—C23—H23A109.5
C11—C10—H10A120.0C22—C23—H23B109.5
C9—C10—H10A120.0H23A—C23—H23B109.5
C12—C11—C10119.5 (3)C22—C23—H23C109.5
C12—C11—H11A120.3H23A—C23—H23C109.5
C10—C11—H11A120.3H23B—C23—H23C109.5
C6—C1—C2—C30.4 (5)C15—N1—C14—O15.2 (5)
C1—C2—C3—C40.3 (5)C15—N1—C14—C7174.6 (3)
C2—C3—C4—C50.7 (5)C6—C7—C14—O1114.1 (3)
C3—C4—C5—C60.3 (5)C8—C7—C14—O113.1 (4)
C2—C1—C6—C50.8 (4)C6—C7—C14—N165.8 (3)
C2—C1—C6—C7179.2 (3)C8—C7—C14—N1167.0 (2)
C4—C5—C6—C10.4 (4)C16—N2—C15—N1176.0 (3)
C4—C5—C6—C7179.5 (3)C16—N2—C15—S13.2 (5)
C1—C6—C7—C894.9 (3)C14—N1—C15—N22.0 (4)
C5—C6—C7—C885.2 (3)C14—N1—C15—S1177.3 (2)
C1—C6—C7—C1430.1 (4)C15—N2—C16—C2116.1 (5)
C5—C6—C7—C14149.8 (3)C15—N2—C16—C17166.4 (3)
C6—C7—C8—C1340.4 (4)C21—C16—C17—C180.7 (4)
C14—C7—C8—C1385.1 (3)N2—C16—C17—C18177.0 (3)
C6—C7—C8—C9139.9 (3)C16—C17—C18—C190.1 (5)
C14—C7—C8—C994.6 (3)C16—C17—C18—C22177.8 (3)
C13—C8—C9—C100.1 (4)C17—C18—C19—C201.0 (5)
C7—C8—C9—C10179.6 (3)C22—C18—C19—C20178.7 (3)
C8—C9—C10—C110.6 (4)C18—C19—C20—C211.2 (5)
C9—C10—C11—C120.9 (4)C17—C16—C21—C200.5 (4)
C10—C11—C12—C130.7 (4)N2—C16—C21—C20176.8 (3)
C9—C8—C13—C120.1 (4)C19—C20—C21—C160.4 (4)
C7—C8—C13—C12179.8 (3)C17—C18—C22—C2310.1 (5)
C11—C12—C13—C80.2 (4)C19—C18—C22—C23172.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O10.90 (3)1.82 (3)2.630 (3)148 (3)
C21—H21A···S10.952.613.255 (3)126
N1—H1N1···O1i0.82 (3)2.25 (3)3.023 (3)157 (3)
C7—H7A···Cgii1.002.873.844 (3)166
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H22N2OS
Mr374.49
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)10.0608 (2), 17.9092 (5), 10.8495 (3)
V3)1954.87 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.26 × 0.23 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.955, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
11560, 4121, 2885
Rint0.071
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.098, 0.99
No. of reflections4121
No. of parameters253
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.32
Absolute structureFlack (1983), 1761 Friedel pairs
Absolute structure parameter0.17 (9)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O10.90 (3)1.82 (3)2.630 (3)148 (3)
C21—H21A···S10.95002.61003.255 (3)126.00
N1—H1N1···O1i0.82 (3)2.25 (3)3.023 (3)157 (3)
C7—H7A···Cgii1.002.873.844 (3)166
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x1/2, y+3/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: F-9119-2012.

§Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the USM Short Term Grant No. 304/PFIZIK/6312078 to conduct this work. SA thanks the Malaysian Government and USM for an Academic Staff Training Scheme Fellowship (ASTS).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSaeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323–1331.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYusof, M. S. M., Arshad, S., Razak, I. A. & Rahman, A. A. (2012b). Acta Cryst. E68, o2670.  CSD CrossRef IUCr Journals Google Scholar
First citationYusof, M. S. M., Mutalib, S. F. A., Arshad, S. & Razak, I. A. (2012a). Acta Cryst. E68, o982.  CSD CrossRef IUCr Journals Google Scholar
First citationZhong, Z., Xing, R., Liu, S., Wang, L., Cai, S. & Li, P. (2008). Carbohydr. Res. 343, 566–570.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds