organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Bromo­phen­yl)-1-butyl-5-[1-(2-chloro-6-methyl­phen­yl)-1H-tetra­zol-5-yl]imidazolidine-2,4-dione

aDepartment of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ 85721, USA, and bBIO5 Oro Valley, College of Pharmacy, University of Arizona, 1580 E. Hanley Blvd, Oro Valley, AZ 85737, USA
*Correspondence e-mail: suer@email.arizona.edu

(Received 29 May 2013; accepted 7 June 2013; online 15 June 2013)

In the title mol­ecule, C21H20BrClN6O2, the chloro-substituted benzene ring forms a dihedral angle of 77.84 (7)° with the tetra­zole ring and the bromo-substituted ring forms a dihedral angle of 43.95 (6)° with the imidazole ring. The dihedral angle between the tetra­zole and imidazole rings is 67.42 (8)°. The terminal methyl group of the butyl substituent is disordered over two sets of sites, with refined occupancies 0.67 (3) and 0.33 (3). In the crystal, there is a short Br⋯N contact of 3.183 (2) Å.

Related literature

For the biological activity of imidazoline-2,4-diones, see: Thenmozhiyal et al. (2004[Thenmozhiyal, J. C., Wong, P. T. H. & Chui, W. K. (2004). J. Med. Chem. 47, 1527-1535.]); Brazil & Pedley (1998[Brazil, C. W. & Pedley, T. A. (1998). Annu. Rev. Med. 49, 135-162.]); Luer (1998[Luer, M. S. (1998). Neurol. Res. 20, 178-182.]); Matzukura et al. (1992[Matzukura, M., Daiku, Y., Ueda, K., Tanaka, S., Igarashi, T. & Minami, N. (1992). Chem. Pharm. Bull. 40, 1823-1827.]); Knabe et al. (1997[Knabe, J., Baldauf, J. & Ahlhelm, A. (1997). Pharmazie, 52, 912-919.]); Somsák et al. (2001[Somsák, L., Kovács, L., Tóth, M., Ösz, E., Szilágyi, L., Györgydeak, Z., Dinya, Z., Docsa, T., Tóth, B. & Gergely, P. (2001). J. Med. Chem. 44, 2843-2848.]); Moloney et al. (2001[Moloney, G. P., Robertson, A. D., Martin, G. R., MacLennan, S., Mathews, N., Dosworth, S., Sang, P. Y., Knight, C. & Glen, R. (2001). J. Med. Chem. 44, 2843-2848.]); Moloney et al. (1999[Moloney, G. P., Martin, G. R., Mathews, N., Milne, A., Hobbs, H., Dosworth, S., Sang, P. Y., Knight, C., Maxwell, M. & Glen, R. (1999). J. Med. Chem. 42, 2504-2526.]); Sutherland & Hess (2000[Sutherland, J. C. & Hess, G. P. (2000). Nat. Prod. Rep. 17, 621-631.]). For information on 1-5-disubstituted tetra­zoles. see: Al-Hourani et al. (2011[Al-Hourani, B. J., Sharma, S. K., Mane, J. Y., Tuszynski, J., Baracos, V., Kniess, T., Suresh, M., Pietzsch, J. & Wuest, F. (2011). Bioorg. Med. Chem. Lett. 21, 1823-1826.]); Brazil & Pedley (1998[Brazil, C. W. & Pedley, T. A. (1998). Annu. Rev. Med. 49, 135-162.]); Davulcu et al. (2009[Davulcu, A. H., McLeod, D. D., Li, L., Katipally, K., Littke, A., Doubleday, W., Xu, Z., McConlogue, C. W., Lai, C. J., Gleeson, M., Schwinden, M. & Parsons, R. L. Jr (2009). J. Org. Chem. 74, 4068-4072.]); Herr (2002[Herr, R. J. (2002). Bioorg. Med. Chem. 10, 3379-3393.]); Quan et al. (2003[Quan, M. L., Ellis, C. D., He, M. Y., Liauw, A. Y., Woerner, F. J., Alexander, R. S., Knabb, R. M., Lam, P. Y. S. & Luettgen, J. M. (2003). Bioorg. Med. Chem. Lett. 13, 369-373.]); Van Poecke et al. (2011[Van Poecke, S., Negri, A., Janssens, J., Solaroli, N., Karlsson, A., Gago, F., Balzarini, J. & Van Calenberg, S. (2011). Org. Biomol. Chem. 9, 892-901.]).

[Scheme 1]

Experimental

Crystal data
  • C21H20BrClN6O2

  • Mr = 503.79

  • Monoclinic, C 2/c

  • a = 27.9412 (9) Å

  • b = 8.8675 (3) Å

  • c = 19.6581 (6) Å

  • β = 112.500 (1)°

  • V = 4499.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.98 mm−1

  • T = 100 K

  • 0.36 × 0.2 × 0.03 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.613, Tmax = 0.746

  • 79112 measured reflections

  • 5647 independent reflections

  • 4475 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.100

  • S = 1.03

  • 5647 reflections

  • 281 parameters

  • 12 restraints

  • H-atom parameters not refined

  • Δρmax = 1.34 e Å−3

  • Δρmin = −1.07 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Hydantoins, also known as imidazoline-2,4-diones, have been shown to display a wide range of biological activities, including anti-convulsant, anti-muscarinic, anti-ulcer, anti-viral and anti-diabetic activities (Thenmozhiyal et al., 2004; Brazil & Pedley, 1998; Luer, 1998; Matzukura et al., 1992; Knabe et al., 1997; Somsák et al., 2001; Moloney et al., 2001; Moloney et al., 1999; Sutherland & Hess, 2000). In an analogous fashion, 1-5-disubstituted tetrazoles are common motifs in a pharmacologically rich vein of chemical space (Davulcu et al., 2009; Al-Hourani et al., 2011; Van Poecke et al., 2011; Quan et al., 2003). In particular, their importance resides in the capacity to act as a bioisosteres of cis-amide bonds (Herr, 2002).

The molecular structure is shown in Fig. 1. The terminal carbon of the butyl substituent is disordered between two positions, with occupancies that refine to 0.67 (3) for C14A and 0.33 (3) for C14B. As seen in Fig. 2, a short contact of 3.183 (2) Å is present between Br1 and N3 of a symmetry related tetrazole ring (0.5+x, 1.5-y, 0.5+z) with a C8—Br1—N3 angle of 174.57 (8)°. The van der Waals radii of the interacting atoms sum to 3.40 Å. The plane of the tetrazole ring (C1/N1-N4) makes a dihedral angle of 77.84 (7)° angle with the the plane of the neighboring chloro-substituted benzene ring (C15—C20). The imidazole ring (C2-C4/N5/N6) plane makes a dihedral angle of 43.95 (6)° relative to the plane of the bromo-substituted benzene ring (C5—C10) and the angle between the planes of the tetrazole and imidazole rings is 67.42 (8)°.

Related literature top

For the biological activity of imidazoline-2,4-diones, see: Thenmozhiyal et al. (2004); Brazil & Pedley (1998); Luer (1998); Matzukura et al. (1992); Knabe et al. (1997); Somsák et al. (2001); Moloney et al. (2001); Moloney et al. (1999); Sutherland & Hess (2000). For information on 1-5-disubstituted tetrazoles. see: Al-Hourani et al. (2011); Brazil & Pedley (1998); Davulcu et al. (2009); Herr (2002); Quan et al. (2003); Van Poecke et al. (2011).

Experimental top

Ethyl glyoxalate (50% solution in toluene, 1.10 g, 5.28 mmol, 1 eq) and 1-butylamine (385 mg, 5.28 mmol, 1 eq) were dissolved in dichloroethane (10 ml) in a 35-ml vial and subjected to microwave irradiation at 393 K for 1 h using a CEM initiator. CF3CH2OH (5 ml) was added, followed by azidotrimethylsilane (TMSN3) (610 mg, 5.28 mmol, 1 eq) and 2-chloro-6-methyl-phenylisocianide (797 mg, 5.28 mmol, 1 eq). The resulting mixture was stirred at room temperature for 12 h. After removal of the solvent under reduced pressure, the TMSN3—Ugi product was purified by silica gel column chromatography (ethyl acetate-hexane, 0–30%) and isolated as a pale yellow oil (500 mg, 1.42 mmol, 54%). This intermediate (250 mg, 0.80 mmol) was dissolved in dry ethanol (2 ml) under a nitrogen atmosphere. 4-bromo-phenylisocyanate (474 mg, 2.40 mmol, 3 eq) was added, and the reaction stirred at room temperature for 12 h. The title compound precipitated from the reaction mixture and was isolated by filtration as a white microcrystalline solid (220 mg, 0.43 mmol, 77%). Crystals suitable for X-ray crystal structure determination were obtained by slow evaporation of an ethyl acetate-hexane solution of the title compound: Mp 458-461 K.

Refinement top

All hydrogen atoms were visible in a difference Fourier map with the exception of those on the disordered terminal carbon of the butyl group and were added at calculated positions. Hydogen bond distances were set at 0.95 Å for aromatic H atoms, 0.99 Å for alkyl H atoms, and 0.98 Å for methyl H atoms. Themal parameters for all methyl hydrogen atoms were set to 1.50 times the isotropic equivalent thermal parameter of the atom to which they were attached. The thermal parameters of all other hydrogen atoms were set to 1.20 times the isotropic equivalent thermal parameter of the atom to which they were attached.

Structure description top

Hydantoins, also known as imidazoline-2,4-diones, have been shown to display a wide range of biological activities, including anti-convulsant, anti-muscarinic, anti-ulcer, anti-viral and anti-diabetic activities (Thenmozhiyal et al., 2004; Brazil & Pedley, 1998; Luer, 1998; Matzukura et al., 1992; Knabe et al., 1997; Somsák et al., 2001; Moloney et al., 2001; Moloney et al., 1999; Sutherland & Hess, 2000). In an analogous fashion, 1-5-disubstituted tetrazoles are common motifs in a pharmacologically rich vein of chemical space (Davulcu et al., 2009; Al-Hourani et al., 2011; Van Poecke et al., 2011; Quan et al., 2003). In particular, their importance resides in the capacity to act as a bioisosteres of cis-amide bonds (Herr, 2002).

The molecular structure is shown in Fig. 1. The terminal carbon of the butyl substituent is disordered between two positions, with occupancies that refine to 0.67 (3) for C14A and 0.33 (3) for C14B. As seen in Fig. 2, a short contact of 3.183 (2) Å is present between Br1 and N3 of a symmetry related tetrazole ring (0.5+x, 1.5-y, 0.5+z) with a C8—Br1—N3 angle of 174.57 (8)°. The van der Waals radii of the interacting atoms sum to 3.40 Å. The plane of the tetrazole ring (C1/N1-N4) makes a dihedral angle of 77.84 (7)° angle with the the plane of the neighboring chloro-substituted benzene ring (C15—C20). The imidazole ring (C2-C4/N5/N6) plane makes a dihedral angle of 43.95 (6)° relative to the plane of the bromo-substituted benzene ring (C5—C10) and the angle between the planes of the tetrazole and imidazole rings is 67.42 (8)°.

For the biological activity of imidazoline-2,4-diones, see: Thenmozhiyal et al. (2004); Brazil & Pedley (1998); Luer (1998); Matzukura et al. (1992); Knabe et al. (1997); Somsák et al. (2001); Moloney et al. (2001); Moloney et al. (1999); Sutherland & Hess (2000). For information on 1-5-disubstituted tetrazoles. see: Al-Hourani et al. (2011); Brazil & Pedley (1998); Davulcu et al. (2009); Herr (2002); Quan et al. (2003); Van Poecke et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Anisotropically refined atoms are shown as 50% probability ellipsoids.
[Figure 2] Fig. 2. Short contact between Br1 and N3 (3.1834 (1) Å).
3-(4-Bromophenyl)-1-butyl-5-[1-(2-chloro-6-methylphenyl)-1H-tetrazol-5-yl]imidazolidine-2,4-dione top
Crystal data top
C21H20BrClN6O2F(000) = 2048
Mr = 503.79Dx = 1.487 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 27.9412 (9) ÅCell parameters from 9862 reflections
b = 8.8675 (3) Åθ = 2.4–27.9°
c = 19.6581 (6) ŵ = 1.98 mm1
β = 112.500 (1)°T = 100 K
V = 4499.9 (3) Å3Rectangular, colourless
Z = 80.36 × 0.2 × 0.03 mm
Data collection top
Bruker APEXII DUO CCD
diffractometer
5647 independent reflections
Radiation source: fine-focus sealed tube4475 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
φ and ω scansθmax = 28.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3736
Tmin = 0.613, Tmax = 0.746k = 1111
79112 measured reflectionsl = 2624
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters not refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0424P)2 + 14.0493P]
where P = (Fo2 + 2Fc2)/3
5647 reflections(Δ/σ)max = 0.013
281 parametersΔρmax = 1.34 e Å3
12 restraintsΔρmin = 1.07 e Å3
Crystal data top
C21H20BrClN6O2V = 4499.9 (3) Å3
Mr = 503.79Z = 8
Monoclinic, C2/cMo Kα radiation
a = 27.9412 (9) ŵ = 1.98 mm1
b = 8.8675 (3) ÅT = 100 K
c = 19.6581 (6) Å0.36 × 0.2 × 0.03 mm
β = 112.500 (1)°
Data collection top
Bruker APEXII DUO CCD
diffractometer
5647 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4475 reflections with I > 2σ(I)
Tmin = 0.613, Tmax = 0.746Rint = 0.043
79112 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03712 restraints
wR(F2) = 0.100H-atom parameters not refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0424P)2 + 14.0493P]
where P = (Fo2 + 2Fc2)/3
5647 reflectionsΔρmax = 1.34 e Å3
281 parametersΔρmin = 1.07 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br11.011728 (9)0.62404 (4)0.390312 (15)0.03786 (10)
Cl10.57351 (2)0.43637 (7)0.01505 (3)0.02585 (13)
O10.77362 (6)0.54096 (17)0.10987 (8)0.0178 (3)
N60.77924 (7)0.65177 (19)0.21947 (9)0.0146 (3)
N10.65391 (7)0.62551 (19)0.00380 (9)0.0140 (3)
O20.75496 (6)0.77690 (18)0.30583 (8)0.0201 (3)
N50.69524 (7)0.6804 (2)0.19766 (10)0.0167 (4)
N40.65662 (7)0.8290 (2)0.05861 (10)0.0178 (4)
C80.93903 (9)0.6319 (3)0.33660 (13)0.0239 (5)
C70.90634 (9)0.5992 (3)0.37241 (12)0.0222 (5)
H70.92010.57160.42290.027*
C60.85319 (9)0.6071 (2)0.33357 (12)0.0188 (4)
H60.83010.58440.35720.023*
C50.83404 (8)0.6485 (2)0.25987 (11)0.0151 (4)
C40.75450 (8)0.5905 (2)0.15058 (11)0.0142 (4)
C20.69640 (8)0.6013 (2)0.13411 (11)0.0146 (4)
H20.68130.49810.13110.018*
C10.66895 (8)0.6853 (2)0.06412 (11)0.0137 (4)
C150.65419 (8)0.4734 (2)0.02730 (11)0.0143 (4)
C160.61720 (8)0.3741 (2)0.02185 (11)0.0160 (4)
C170.61567 (9)0.2265 (2)0.04531 (12)0.0207 (4)
H170.59070.15790.04140.025*
C180.65116 (9)0.1805 (3)0.07466 (12)0.0213 (4)
H180.65030.07950.09120.026*
C100.86722 (9)0.6800 (3)0.22433 (12)0.0201 (4)
H100.85370.70770.17380.024*
C90.92031 (9)0.6708 (3)0.26306 (13)0.0239 (5)
H90.94350.69110.23930.029*
C30.74322 (8)0.7112 (2)0.24774 (12)0.0160 (4)
N20.63105 (7)0.7362 (2)0.05322 (10)0.0176 (4)
N30.63295 (7)0.8568 (2)0.01536 (11)0.0197 (4)
C190.68770 (8)0.2792 (2)0.08031 (11)0.0178 (4)
H190.71180.24470.10030.021*
C200.68992 (7)0.4282 (2)0.05726 (10)0.0122 (3)
C110.64797 (8)0.7115 (3)0.21019 (12)0.0190 (4)
H11A0.62180.75500.16490.023*
H11B0.65550.78710.25000.023*
C120.62577 (9)0.5705 (3)0.23131 (13)0.0228 (5)
H12A0.65140.52930.27780.027*
H12B0.61960.49310.19250.027*
C130.57507 (10)0.6024 (3)0.24118 (14)0.0316 (6)
H13A0.56850.52050.27070.038*0.67 (3)
H13B0.57840.69790.26870.038*0.67 (3)
H13C0.58220.67360.28270.038*0.33 (3)
H13D0.56250.50720.25480.038*0.33 (3)
C14A0.5291 (4)0.614 (2)0.1675 (7)0.046 (2)0.67 (3)
H14A0.53530.69590.13830.069*0.67 (3)
H14B0.49750.63560.17630.069*0.67 (3)
H14C0.52500.51880.14070.069*0.67 (3)
C14B0.5321 (10)0.668 (3)0.1735 (16)0.046 (2)0.33 (3)
H14D0.54260.76760.16260.069*0.33 (3)
H14E0.50030.67740.18310.069*0.33 (3)
H14F0.52580.60090.13130.069*0.33 (3)
C210.73027 (7)0.5400 (2)0.06540 (10)0.0122 (3)
H21A0.71240.62990.09220.018*
H21B0.74890.49120.09270.018*
H21C0.75490.56950.01650.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01517 (12)0.0592 (2)0.03350 (15)0.00097 (11)0.00299 (10)0.00200 (13)
Cl10.0240 (3)0.0277 (3)0.0311 (3)0.0026 (2)0.0164 (2)0.0040 (2)
O10.0192 (7)0.0203 (7)0.0158 (7)0.0027 (6)0.0089 (6)0.0023 (6)
N60.0153 (8)0.0169 (8)0.0131 (8)0.0000 (7)0.0071 (7)0.0021 (7)
N10.0143 (8)0.0136 (8)0.0140 (8)0.0004 (6)0.0052 (7)0.0007 (7)
O20.0221 (8)0.0236 (8)0.0166 (7)0.0013 (6)0.0096 (6)0.0064 (6)
N50.0166 (8)0.0209 (9)0.0144 (8)0.0002 (7)0.0080 (7)0.0034 (7)
N40.0196 (9)0.0148 (8)0.0204 (9)0.0006 (7)0.0093 (7)0.0001 (7)
C80.0136 (10)0.0303 (12)0.0247 (11)0.0003 (9)0.0038 (9)0.0032 (10)
C70.0200 (10)0.0287 (12)0.0149 (10)0.0007 (9)0.0032 (8)0.0003 (9)
C60.0205 (10)0.0210 (10)0.0164 (10)0.0014 (8)0.0089 (8)0.0004 (8)
C50.0142 (9)0.0156 (9)0.0154 (10)0.0002 (7)0.0054 (8)0.0016 (8)
C40.0162 (9)0.0119 (9)0.0142 (9)0.0017 (7)0.0057 (8)0.0016 (7)
C20.0156 (9)0.0156 (9)0.0139 (9)0.0000 (7)0.0071 (8)0.0012 (8)
C10.0128 (9)0.0137 (9)0.0166 (10)0.0007 (7)0.0076 (8)0.0005 (8)
C150.0166 (9)0.0131 (9)0.0124 (9)0.0015 (7)0.0047 (8)0.0003 (7)
C160.0158 (9)0.0188 (10)0.0150 (9)0.0003 (8)0.0076 (8)0.0000 (8)
C170.0265 (11)0.0166 (10)0.0224 (11)0.0049 (9)0.0133 (9)0.0014 (9)
C180.0305 (12)0.0156 (10)0.0202 (11)0.0005 (9)0.0123 (9)0.0004 (8)
C100.0202 (10)0.0230 (11)0.0178 (10)0.0000 (9)0.0082 (9)0.0004 (9)
C90.0185 (11)0.0313 (12)0.0251 (12)0.0021 (9)0.0121 (9)0.0012 (10)
C30.0178 (10)0.0167 (10)0.0165 (10)0.0004 (8)0.0098 (8)0.0016 (8)
N20.0184 (8)0.0164 (8)0.0177 (9)0.0026 (7)0.0065 (7)0.0042 (7)
N30.0209 (9)0.0168 (9)0.0225 (9)0.0010 (7)0.0096 (8)0.0029 (7)
C190.0223 (10)0.0190 (10)0.0151 (10)0.0031 (8)0.0105 (8)0.0007 (8)
C200.0127 (6)0.0166 (7)0.0085 (6)0.0002 (5)0.0054 (5)0.0007 (5)
C110.0166 (10)0.0238 (11)0.0197 (10)0.0024 (8)0.0104 (8)0.0002 (9)
C120.0230 (11)0.0280 (12)0.0209 (11)0.0025 (9)0.0123 (9)0.0014 (9)
C130.0252 (12)0.0470 (16)0.0291 (13)0.0084 (11)0.0176 (11)0.0046 (12)
C14A0.0167 (19)0.079 (8)0.043 (3)0.011 (4)0.0123 (19)0.004 (5)
C14B0.0167 (19)0.079 (8)0.043 (3)0.011 (4)0.0123 (19)0.004 (5)
C210.0127 (6)0.0166 (7)0.0085 (6)0.0002 (5)0.0054 (5)0.0007 (5)
Geometric parameters (Å, º) top
Br1—C81.899 (2)C18—H180.9500
Cl1—C161.732 (2)C18—C191.381 (3)
O1—C41.203 (2)C10—H100.9500
N6—C51.430 (3)C10—C91.387 (3)
N6—C41.375 (3)C9—H90.9500
N6—C31.424 (3)N2—N31.292 (3)
N1—C11.346 (3)C19—H190.9500
N1—C151.427 (3)C19—C201.390 (3)
N1—N21.356 (2)C20—C211.555 (3)
O2—C31.210 (3)C11—H11A0.9900
N5—C21.444 (3)C11—H11B0.9900
N5—C31.353 (3)C11—C121.522 (3)
N5—C111.459 (3)C12—H12A0.9900
N4—C11.314 (3)C12—H12B0.9900
N4—N31.370 (3)C12—C131.528 (3)
C8—C71.380 (3)C13—H13A0.9900
C8—C91.380 (3)C13—H13B0.9900
C7—H70.9500C13—H13C0.9900
C7—C61.388 (3)C13—H13D0.9900
C6—H60.9500C13—C14A1.527 (12)
C6—C51.388 (3)C13—C14B1.53 (3)
C5—C101.386 (3)C14A—H14A0.9800
C4—C21.532 (3)C14A—H14B0.9800
C2—H21.0000C14A—H14C0.9800
C2—C11.493 (3)C14B—H14D0.9800
C15—C161.393 (3)C14B—H14E0.9800
C15—C201.398 (3)C14B—H14F0.9800
C16—C171.383 (3)C21—H21A0.9800
C17—H170.9500C21—H21B0.9800
C17—C181.386 (3)C21—H21C0.9800
C4—N6—C5124.55 (17)C10—C9—H9120.4
C4—N6—C3111.50 (17)O2—C3—N6124.71 (19)
C3—N6—C5123.86 (17)O2—C3—N5128.24 (19)
C1—N1—C15130.94 (17)N5—C3—N6107.04 (17)
C1—N1—N2107.96 (16)N3—N2—N1106.38 (16)
N2—N1—C15120.77 (16)N2—N3—N4111.07 (17)
C2—N5—C11123.99 (17)C18—C19—H19119.4
C3—N5—C2112.53 (17)C18—C19—C20121.21 (19)
C3—N5—C11123.23 (17)C20—C19—H19119.4
C1—N4—N3105.46 (17)C15—C20—C21121.55 (18)
C7—C8—Br1118.98 (18)C19—C20—C15117.37 (18)
C9—C8—Br1119.19 (17)C19—C20—C21121.08 (17)
C9—C8—C7121.8 (2)N5—C11—H11A109.1
C8—C7—H7120.4N5—C11—H11B109.1
C8—C7—C6119.1 (2)N5—C11—C12112.39 (18)
C6—C7—H7120.4H11A—C11—H11B107.9
C7—C6—H6120.3C12—C11—H11A109.1
C5—C6—C7119.4 (2)C12—C11—H11B109.1
C5—C6—H6120.3C11—C12—H12A109.2
C6—C5—N6119.21 (18)C11—C12—H12B109.2
C6—C5—C10121.0 (2)C11—C12—C13112.1 (2)
C10—C5—N6119.76 (19)H12A—C12—H12B107.9
O1—C4—N6128.02 (19)C13—C12—H12A109.2
O1—C4—C2125.92 (19)C13—C12—H12B109.2
N6—C4—C2106.04 (16)C12—C13—H13A109.2
N5—C2—C4102.73 (16)C12—C13—H13B109.2
N5—C2—H2110.2C12—C13—H13C108.6
N5—C2—C1112.39 (17)C12—C13—H13D108.6
C4—C2—H2110.2C12—C13—C14B114.7 (10)
C1—C2—C4110.81 (16)H13A—C13—H13B107.9
C1—C2—H2110.2H13C—C13—H13D107.6
N1—C1—C2124.98 (18)C14A—C13—C12112.1 (5)
N4—C1—N1109.13 (18)C14A—C13—H13A109.2
N4—C1—C2125.88 (19)C14A—C13—H13B109.2
C16—C15—N1118.47 (18)C14B—C13—H13C108.6
C16—C15—C20121.44 (19)C14B—C13—H13D108.6
C20—C15—N1120.05 (18)C13—C14A—H14A109.5
C15—C16—Cl1119.55 (16)C13—C14A—H14B109.5
C17—C16—Cl1120.31 (16)C13—C14A—H14C109.5
C17—C16—C15120.14 (19)C13—C14B—H14D109.5
C16—C17—H17120.6C13—C14B—H14E109.5
C18—C17—C16118.8 (2)C13—C14B—H14F109.5
C18—C17—H17120.6H14D—C14B—H14E109.5
C17—C18—H18119.5H14D—C14B—H14F109.5
C19—C18—C17121.1 (2)H14E—C14B—H14F109.5
C19—C18—H18119.5C20—C21—H21A109.5
C5—C10—H10120.2C20—C21—H21B109.5
C5—C10—C9119.5 (2)C20—C21—H21C109.5
C9—C10—H10120.2H21A—C21—H21B109.5
C8—C9—C10119.1 (2)H21A—C21—H21C109.5
C8—C9—H9120.4H21B—C21—H21C109.5
Br1—C8—C7—C6179.01 (17)C1—N1—C15—C20107.9 (2)
Br1—C8—C9—C10178.49 (18)C1—N1—N2—N30.3 (2)
Cl1—C16—C17—C18179.91 (17)C1—N4—N3—N20.2 (2)
O1—C4—C2—N5175.0 (2)C15—N1—C1—N4173.71 (19)
O1—C4—C2—C154.7 (3)C15—N1—C1—C27.6 (3)
N6—C5—C10—C9177.4 (2)C15—N1—N2—N3174.40 (18)
N6—C4—C2—N53.6 (2)C15—C16—C17—C180.5 (3)
N6—C4—C2—C1123.80 (18)C16—C15—C20—C191.1 (3)
N1—C15—C16—Cl11.6 (3)C16—C15—C20—C21178.28 (18)
N1—C15—C16—C17178.84 (19)C16—C17—C18—C190.3 (3)
N1—C15—C20—C19178.92 (18)C17—C18—C19—C200.4 (3)
N1—C15—C20—C210.4 (3)C18—C19—C20—C150.8 (3)
N1—N2—N3—N40.1 (2)C18—C19—C20—C21178.54 (19)
N5—C2—C1—N1164.34 (18)C9—C8—C7—C60.7 (4)
N5—C2—C1—N417.2 (3)C3—N6—C5—C642.6 (3)
N5—C11—C12—C13177.58 (19)C3—N6—C5—C10140.3 (2)
C8—C7—C6—C50.4 (3)C3—N6—C4—O1174.4 (2)
C7—C8—C9—C101.2 (4)C3—N6—C4—C24.1 (2)
C7—C6—C5—N6177.97 (19)C3—N5—C2—C41.9 (2)
C7—C6—C5—C100.9 (3)C3—N5—C2—C1121.07 (19)
C6—C5—C10—C90.4 (3)C3—N5—C11—C12101.3 (2)
C5—N6—C4—O19.1 (3)N2—N1—C1—N40.5 (2)
C5—N6—C4—C2172.39 (18)N2—N1—C1—C2179.10 (18)
C5—N6—C3—O26.8 (3)N2—N1—C15—C1698.3 (2)
C5—N6—C3—N5173.55 (18)N2—N1—C15—C2079.6 (2)
C5—C10—C9—C80.7 (4)N3—N4—C1—N10.4 (2)
C4—N6—C5—C6133.4 (2)N3—N4—C1—C2179.02 (18)
C4—N6—C5—C1043.7 (3)C20—C15—C16—Cl1179.49 (16)
C4—N6—C3—O2176.7 (2)C20—C15—C16—C171.0 (3)
C4—N6—C3—N52.9 (2)C11—N5—C2—C4176.40 (18)
C4—C2—C1—N181.4 (2)C11—N5—C2—C164.5 (3)
C4—C2—C1—N497.0 (2)C11—N5—C3—N6174.12 (18)
C2—N5—C3—N60.4 (2)C11—N5—C3—O26.3 (4)
C2—N5—C3—O2179.2 (2)C11—C12—C13—C14A78.3 (8)
C2—N5—C11—C1272.6 (3)C11—C12—C13—C14B58.3 (12)
C1—N1—C15—C1674.2 (3)

Experimental details

Crystal data
Chemical formulaC21H20BrClN6O2
Mr503.79
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)27.9412 (9), 8.8675 (3), 19.6581 (6)
β (°) 112.500 (1)
V3)4499.9 (3)
Z8
Radiation typeMo Kα
µ (mm1)1.98
Crystal size (mm)0.36 × 0.2 × 0.03
Data collection
DiffractometerBruker APEXII DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.613, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
79112, 5647, 4475
Rint0.043
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.03
No. of reflections5647
No. of parameters281
No. of restraints12
H-atom treatmentH-atom parameters not refined
w = 1/[σ2(Fo2) + (0.0424P)2 + 14.0493P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.34, 1.07

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010).

 

Acknowledgements

This work was supported by NIH grants (RC2MH090878 and P41GM086190) to CH. The Bruker Kappa APEXII DUO diffractometer was purchased with funding from NSF grant CHE-0741837.

References

First citationAl-Hourani, B. J., Sharma, S. K., Mane, J. Y., Tuszynski, J., Baracos, V., Kniess, T., Suresh, M., Pietzsch, J. & Wuest, F. (2011). Bioorg. Med. Chem. Lett. 21, 1823–1826.  Web of Science CAS PubMed Google Scholar
First citationBrazil, C. W. & Pedley, T. A. (1998). Annu. Rev. Med. 49, 135–162.  Web of Science PubMed Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDavulcu, A. H., McLeod, D. D., Li, L., Katipally, K., Littke, A., Doubleday, W., Xu, Z., McConlogue, C. W., Lai, C. J., Gleeson, M., Schwinden, M. & Parsons, R. L. Jr (2009). J. Org. Chem. 74, 4068–4072.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHerr, R. J. (2002). Bioorg. Med. Chem. 10, 3379–3393.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKnabe, J., Baldauf, J. & Ahlhelm, A. (1997). Pharmazie, 52, 912–919.  Web of Science CAS PubMed Google Scholar
First citationLuer, M. S. (1998). Neurol. Res. 20, 178–182.  Web of Science CAS PubMed Google Scholar
First citationMatzukura, M., Daiku, Y., Ueda, K., Tanaka, S., Igarashi, T. & Minami, N. (1992). Chem. Pharm. Bull. 40, 1823–1827.  PubMed Web of Science Google Scholar
First citationMoloney, G. P., Martin, G. R., Mathews, N., Milne, A., Hobbs, H., Dosworth, S., Sang, P. Y., Knight, C., Maxwell, M. & Glen, R. (1999). J. Med. Chem. 42, 2504–2526.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoloney, G. P., Robertson, A. D., Martin, G. R., MacLennan, S., Mathews, N., Dosworth, S., Sang, P. Y., Knight, C. & Glen, R. (2001). J. Med. Chem. 44, 2843–2848.  Web of Science PubMed Google Scholar
First citationQuan, M. L., Ellis, C. D., He, M. Y., Liauw, A. Y., Woerner, F. J., Alexander, R. S., Knabb, R. M., Lam, P. Y. S. & Luettgen, J. M. (2003). Bioorg. Med. Chem. Lett. 13, 369–373.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSomsák, L., Kovács, L., Tóth, M., Ösz, E., Szilágyi, L., Györgydeak, Z., Dinya, Z., Docsa, T., Tóth, B. & Gergely, P. (2001). J. Med. Chem. 44, 2843–2848.  Web of Science PubMed Google Scholar
First citationSutherland, J. C. & Hess, G. P. (2000). Nat. Prod. Rep. 17, 621–631.  Web of Science CrossRef PubMed CAS Google Scholar
First citationThenmozhiyal, J. C., Wong, P. T. H. & Chui, W. K. (2004). J. Med. Chem. 47, 1527–1535.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVan Poecke, S., Negri, A., Janssens, J., Solaroli, N., Karlsson, A., Gago, F., Balzarini, J. & Van Calenberg, S. (2011). Org. Biomol. Chem. 9, 892–901.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds