organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 7| July 2013| Pages o1173-o1174

(2Z)-3-(2,4-Di­chloro­phen­yl)-3-hy­dr­oxy-N-phenyl­prop-2-ene­thio­amide

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, bDepartment of Agrochemicals & Pest Management, Shivaji University, Kolhapur, India, and cDepartment of Chemistry, Shivaji University, Kolhapur, India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 17 June 2013; accepted 24 June 2013; online 29 June 2013)

In the title mol­ecule, C15H11Cl2NOS, the dihedral angle between the phenyl and benzene rings is 72.24 (1)°. In the crystal, pairs of N—H⋯S hydrogen bonds form dimers with twofold rotational symmetry. The dimers are connected by weak C—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (001). An intra­molecular O—H⋯S hydrogen bond is also observed.

Related literature

For the biological activity and applications of thio­amides, see: Zahid et al. (2009[Zahid, M., Yasin, K. A., Akhtar, T., Rama, N. H., Hameed, S., Al Masoudi, N. A., Loddo, R. & La Colla, P. (2009). Arkivoc, xi, 85-93.]); Jagodzinski (2003[Jagodzinski, T. S. (2003). Chem. Rev. 103, 197-227.]); Lebana et al. (2008[Lebana, S. T., Sultana, R. & Hendal, G. (2008). Polyhedron, 27, 1008-1016.]). For the synthesis of thio­amides, see: Bauer & Kuhlein (1985[Bauer, W. & Kuhlein, K. (1985). Houben-Weyl Methoden der Organischen Chemie, Vol. E5, p. 1218. Stuttgart, New York: Georg Thieme Verlag.]); Cava & Levinson (1985[Cava, M. P. & Levinson, M. I. (1985). Tetrahedron, 41, 5061-5087.]). For the synthesis of the title compound, see: Rudrof et al. (1979[Rudrof, W. D., Schierhorn, A. & Augustin, M. (1979). Tetrahedron, 35, 551-556.]). For related structures, see: Xu et al. (2005[Xu, L.-Z., Yang, S.-H., Zhu, C.-Y., Li, K. & Liu, F.-Q. (2005). Acta Cryst. E61, o259-o260.]); Cowley et al. (2002[Cowley, A. R., Dilworth, J. R. & Dorinelly, P. S. (2002). J. Am. Chem. Soc. 124, 5270-5271.]); Jiang (2009[Jiang, J.-H. (2009). Acta Cryst. E65, o52.]); Patil et al. (2011[Patil, D. R., Salunkhe, S. M., Aitawade, M. M., Deshmukh, M. B., Kolekar, G. B. & Anbhule, P. V. (2011). Pharma Chem. 3, 207-214.]); Deshmukh et al. (2009[Deshmukh, M. B., Salunkhe, S. M., Patil, D. R. & Anbhule, P. V. (2009). Eur. J. Med. Chem. 44, 2651-2654.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11Cl2NOS

  • Mr = 324.21

  • Orthorhombic, P c c n

  • a = 28.9562 (6) Å

  • b = 13.2610 (3) Å

  • c = 7.5284 (2) Å

  • V = 2890.82 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.1 mm

Data collection
  • Agilent Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.835, Tmax = 1.000

  • 63107 measured reflections

  • 2836 independent reflections

  • 2275 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.091

  • S = 1.11

  • 2836 reflections

  • 185 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.86 2.61 3.4397 (18) 162
C3′—H3′⋯O1ii 0.93 2.59 3.496 (3) 164
O1—H11⋯S1 0.89 (3) 2.10 (3) 2.9315 (18) 157 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thioamides exhibit a wide range of applications, not only as synthetic intermediates in the synthesis of a variety of hetero-cyclic compounds (Zahid et al., 2009), but also numerous biological activities have been associated with them (Jagodzinski, 2003). Moreover, thioamides are important ligands in the field of coordination chemistry (Lebana et al., 2008). Several synthetic reports on thioamides have been published involving the uses of Lawesson's regent (Cava & Levinson, 1985) and phosphorus pentasulfide (Bauer & Kuhlein, 1985). Our ongoing research involves the development of newer synthetic methodologies for heterocyclic compounds (Patil et al., 2011; Deshmukh et al., 2009). The crystal structure of the title compound is described herein.

The molecular structure of the title compound (I) is shown in Fig. 1. The bond lengths (Allen, et al., 1987) and angles observed in (I) show normal values and are comparable with related structures (Xu, et al., 2005; Jiang, 2009). The dihedral angle between the phenyl and benzene rings [C1'-C6' and C4-C9] is 72.24 (1)°. The two chlorine atoms Cl1 and Cl2 which were not included in the calculation of the least-squares plane of the C1'-C6' ring, deviate from the plane by 0.1336 (1) and 0.0310 (1) Å. The C1—S1 bond length of 1.695 (2) Å is comparable with the value [1.688 (2) Å] in a related structure (Cowley et al., 2002). In the crystal, pairs of N—H···S hydrogen bonds form dimers with twofold rotational symmetry. The dimers are connected by weak C—H···O hydrogen bonds to form a two-dimensional network parallel to (001). An intramolecular O—H···S hydrogen bond is also observed. The hydrogen bonds are shown in Fig. 2.

Related literature top

For the biological activity and applications of thioamides, see: Zahid et al. (2009); Jagodzinski (2003); Lebana et al. (2008). For the synthesis of thioamides, see: Bauer & Kuhlein (1985); Cava & Levinson (1985). For the synthesis of the title compound, see: Rudrof et al. (1979). For related structures, see: Xu et al. (2005); Cowley et al. (2002); Jiang (2009); Patil et al. (2011); Deshmukh et al. (2009). For standard bond-length data, see: Allen et al. (1987).

Experimental top

(2Z)-3-(2,4-dichlorophenyl)-3-hydroxy-N-phenylprop-2-enethioamide was synthesized by a previously reported procedure (Rudrof et al., 1979). The product dissolved in EtOH, on slow evaporation of the solvent formed crystals of the title compound. Yield: 85%. IR (KBr): 3442, 3207, 1607, 1364, 1224 cm-1. 1H NMR (300 MHz, CDCl3): dH = 5.97 (s, 1H, CH), 7.19–7.53 (m, 8H, Ar—H),8.29 (bs, 1H, NH), 14.75 (s, 1H, OH). 13 C NMR (CDCl3): dc = 136.3, 133.7, 132.6, 131.2, 137.0, 130.9, 129.4, 128.8, 127.5, 127.1, 126.8, 125.2, 123.1. (m/z) = 324.

Refinement top

Hydrogen atom H11 bonded to O1 was located in a difference Fourier map and was refined independently with an isotropic displacement parameter. All other H atoms were positioned geometrically and were treated as riding on their parent atoms, with C—H = 0.93 Å, N—H = 0.86Å and Uiso(H)=1.2Ueq(C,N).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dotted lines.
(2Z)-3-(2,4-Dichlorophenyl)-3-hydroxy-N-phenylprop-2-enethioamide top
Crystal data top
C15H11Cl2NOSF(000) = 1328
Mr = 324.21Dx = 1.490 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 24816 reflections
a = 28.9562 (6) Åθ = 3.4–29.1°
b = 13.2610 (3) ŵ = 0.59 mm1
c = 7.5284 (2) ÅT = 293 K
V = 2890.82 (12) Å3Block, orange
Z = 80.3 × 0.2 × 0.1 mm
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
2836 independent reflections
Radiation source: fine-focus sealed tube2275 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.4°
ω scanh = 3535
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1616
Tmin = 0.835, Tmax = 1.000l = 99
63107 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0293P)2 + 2.0935P]
where P = (Fo2 + 2Fc2)/3
2836 reflections(Δ/σ)max = 0.001
185 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C15H11Cl2NOSV = 2890.82 (12) Å3
Mr = 324.21Z = 8
Orthorhombic, PccnMo Kα radiation
a = 28.9562 (6) ŵ = 0.59 mm1
b = 13.2610 (3) ÅT = 293 K
c = 7.5284 (2) Å0.3 × 0.2 × 0.1 mm
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
2836 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2275 reflections with I > 2σ(I)
Tmin = 0.835, Tmax = 1.000Rint = 0.067
63107 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.22 e Å3
2836 reflectionsΔρmin = 0.18 e Å3
185 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.31822 (2)0.16889 (5)0.20313 (10)0.04414 (18)
O10.41937 (6)0.17165 (12)0.2188 (3)0.0476 (5)
N10.29969 (6)0.36160 (14)0.2171 (3)0.0391 (5)
H10.27190.33910.21140.047*
Cl10.44813 (2)0.49703 (5)0.15039 (11)0.0581 (2)
Cl20.61091 (2)0.40683 (7)0.43216 (13)0.0718 (3)
C10.33303 (8)0.29196 (17)0.2249 (3)0.0338 (5)
C1'0.46507 (7)0.31015 (16)0.2953 (3)0.0320 (5)
C20.37934 (7)0.32640 (17)0.2576 (3)0.0333 (5)
H20.38280.39450.28400.040*
C2'0.48099 (8)0.40787 (17)0.2622 (3)0.0360 (5)
C30.41830 (7)0.27056 (16)0.2540 (3)0.0315 (5)
C3'0.52538 (8)0.43770 (19)0.3058 (3)0.0430 (6)
H3'0.53510.50330.28340.052*
C40.30453 (7)0.46842 (17)0.2172 (3)0.0343 (5)
C4'0.55494 (8)0.3693 (2)0.3827 (3)0.0440 (6)
C50.28010 (8)0.5236 (2)0.3398 (4)0.0463 (6)
H50.26190.49120.42410.056*
C5'0.54086 (8)0.2721 (2)0.4168 (4)0.0478 (7)
H5'0.56100.22610.46850.057*
C60.28268 (10)0.6273 (2)0.3371 (4)0.0565 (8)
H60.26610.66470.42000.068*
C6'0.49660 (8)0.2442 (2)0.3733 (3)0.0404 (6)
H6'0.48730.17840.39690.048*
C70.30932 (10)0.6760 (2)0.2137 (4)0.0534 (7)
H70.31110.74600.21340.064*
C80.33346 (9)0.6208 (2)0.0902 (4)0.0476 (7)
H80.35150.65370.00620.057*
C90.33111 (8)0.51666 (18)0.0900 (3)0.0401 (6)
H90.34720.47950.00550.048*
H110.3902 (11)0.152 (2)0.210 (4)0.070 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0340 (3)0.0307 (3)0.0677 (4)0.0066 (3)0.0007 (3)0.0007 (3)
O10.0327 (10)0.0286 (9)0.0816 (13)0.0008 (7)0.0009 (9)0.0031 (9)
N10.0216 (10)0.0322 (10)0.0636 (14)0.0034 (8)0.0027 (9)0.0025 (10)
Cl10.0339 (3)0.0381 (3)0.1022 (6)0.0011 (3)0.0061 (4)0.0241 (4)
Cl20.0333 (4)0.0834 (6)0.0989 (6)0.0046 (4)0.0186 (4)0.0110 (5)
C10.0319 (13)0.0313 (12)0.0382 (13)0.0035 (10)0.0017 (10)0.0014 (10)
C1'0.0279 (11)0.0327 (12)0.0354 (12)0.0031 (9)0.0028 (9)0.0003 (10)
C20.0292 (12)0.0258 (11)0.0451 (13)0.0016 (9)0.0008 (10)0.0000 (10)
C2'0.0298 (12)0.0331 (12)0.0452 (13)0.0025 (10)0.0006 (10)0.0015 (11)
C30.0303 (12)0.0268 (12)0.0375 (12)0.0001 (9)0.0028 (10)0.0023 (10)
C3'0.0322 (13)0.0378 (13)0.0591 (16)0.0023 (11)0.0001 (12)0.0034 (12)
C40.0236 (11)0.0310 (12)0.0484 (14)0.0020 (9)0.0073 (10)0.0016 (11)
C4'0.0270 (13)0.0569 (16)0.0480 (15)0.0003 (11)0.0039 (11)0.0075 (13)
C50.0357 (14)0.0479 (15)0.0552 (16)0.0073 (11)0.0058 (12)0.0036 (13)
C5'0.0363 (14)0.0518 (17)0.0552 (16)0.0091 (12)0.0079 (12)0.0076 (13)
C60.0555 (18)0.0457 (16)0.069 (2)0.0163 (14)0.0018 (15)0.0087 (15)
C6'0.0343 (13)0.0391 (13)0.0477 (14)0.0028 (11)0.0003 (11)0.0094 (12)
C70.0519 (17)0.0324 (14)0.076 (2)0.0054 (12)0.0157 (15)0.0011 (14)
C80.0381 (14)0.0434 (15)0.0613 (17)0.0052 (11)0.0074 (13)0.0148 (13)
C90.0301 (13)0.0420 (14)0.0481 (14)0.0000 (10)0.0002 (11)0.0021 (12)
Geometric parameters (Å, º) top
S1—C11.695 (2)C3'—H3'0.9300
O1—C31.339 (3)C4—C51.374 (3)
O1—H110.89 (3)C4—C91.385 (3)
N1—C11.337 (3)C4'—C5'1.376 (4)
N1—C41.423 (3)C5—C61.377 (4)
N1—H10.8600C5—H50.9300
Cl1—C2'1.735 (2)C5'—C6'1.374 (3)
Cl2—C4'1.736 (2)C5'—H5'0.9300
C1—C21.438 (3)C6—C71.369 (4)
C1'—C6'1.394 (3)C6—H60.9300
C1'—C2'1.398 (3)C6'—H6'0.9300
C1'—C31.485 (3)C7—C81.374 (4)
C2—C31.350 (3)C7—H70.9300
C2—H20.9300C8—C91.382 (3)
C2'—C3'1.384 (3)C8—H80.9300
C3'—C4'1.375 (3)C9—H90.9300
C3—O1—H11106 (2)C3'—C4'—C5'120.8 (2)
C1—N1—C4128.05 (19)C3'—C4'—Cl2118.8 (2)
C1—N1—H1116.0C5'—C4'—Cl2120.3 (2)
C4—N1—H1116.0C4—C5—C6119.6 (3)
N1—C1—C2117.5 (2)C4—C5—H5120.2
N1—C1—S1118.57 (17)C6—C5—H5120.2
C2—C1—S1123.93 (17)C6'—C5'—C4'119.0 (2)
C6'—C1'—C2'116.2 (2)C6'—C5'—H5'120.5
C6'—C1'—C3117.6 (2)C4'—C5'—H5'120.5
C2'—C1'—C3126.2 (2)C7—C6—C5120.7 (3)
C3—C2—C1127.0 (2)C7—C6—H6119.6
C3—C2—H2116.5C5—C6—H6119.6
C1—C2—H2116.5C5'—C6'—C1'122.8 (2)
C3'—C2'—C1'121.9 (2)C5'—C6'—H6'118.6
C3'—C2'—Cl1115.43 (18)C1'—C6'—H6'118.6
C1'—C2'—Cl1122.49 (18)C6—C7—C8119.7 (3)
O1—C3—C2124.1 (2)C6—C7—H7120.2
O1—C3—C1'111.51 (18)C8—C7—H7120.2
C2—C3—C1'124.3 (2)C7—C8—C9120.5 (3)
C4'—C3'—C2'119.3 (2)C7—C8—H8119.7
C4'—C3'—H3'120.3C9—C8—H8119.7
C2'—C3'—H3'120.3C8—C9—C4119.2 (2)
C5—C4—C9120.3 (2)C8—C9—H9120.4
C5—C4—N1118.7 (2)C4—C9—H9120.4
C9—C4—N1120.9 (2)
C4—N1—C1—C27.8 (4)C1—N1—C4—C956.9 (4)
C4—N1—C1—S1174.3 (2)C2'—C3'—C4'—C5'0.1 (4)
N1—C1—C2—C3173.3 (2)C2'—C3'—C4'—Cl2178.55 (19)
S1—C1—C2—C38.9 (4)C9—C4—C5—C60.9 (4)
C6'—C1'—C2'—C3'0.6 (3)N1—C4—C5—C6177.1 (2)
C3—C1'—C2'—C3'180.0 (2)C3'—C4'—C5'—C6'0.2 (4)
C6'—C1'—C2'—Cl1174.85 (18)Cl2—C4'—C5'—C6'178.9 (2)
C3—C1'—C2'—Cl14.6 (3)C4—C5—C6—C70.0 (4)
C1—C2—C3—O10.2 (4)C4'—C5'—C6'—C1'0.1 (4)
C1—C2—C3—C1'177.8 (2)C2'—C1'—C6'—C5'0.3 (4)
C6'—C1'—C3—O129.6 (3)C3—C1'—C6'—C5'179.7 (2)
C2'—C1'—C3—O1149.8 (2)C5—C6—C7—C80.5 (4)
C6'—C1'—C3—C2148.2 (2)C6—C7—C8—C90.1 (4)
C2'—C1'—C3—C232.4 (4)C7—C8—C9—C40.8 (4)
C1'—C2'—C3'—C4'0.5 (4)C5—C4—C9—C81.3 (4)
Cl1—C2'—C3'—C4'175.2 (2)N1—C4—C9—C8177.4 (2)
C1—N1—C4—C5126.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.613.4397 (18)162
C3—H3···O1ii0.932.593.496 (3)164
O1—H11···S10.89 (3)2.10 (3)2.9315 (18)157 (2)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H11Cl2NOS
Mr324.21
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)293
a, b, c (Å)28.9562 (6), 13.2610 (3), 7.5284 (2)
V3)2890.82 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerAgilent Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.835, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
63107, 2836, 2275
Rint0.067
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.091, 1.11
No. of reflections2836
No. of parameters185
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.18

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.613.4397 (18)162
C3'—H3'···O1ii0.932.593.496 (3)164
O1—H11···S10.89 (3)2.10 (3)2.9315 (18)157 (2)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

RK is thankful to the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/ CMP-47/2003.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science
First citationBauer, W. & Kuhlein, K. (1985). Houben–Weyl Methoden der Organischen Chemie, Vol. E5, p. 1218. Stuttgart, New York: Georg Thieme Verlag.
First citationCava, M. P. & Levinson, M. I. (1985). Tetrahedron, 41, 5061–5087.  CrossRef CAS Web of Science
First citationCowley, A. R., Dilworth, J. R. & Dorinelly, P. S. (2002). J. Am. Chem. Soc. 124, 5270–5271.  Web of Science CSD CrossRef PubMed CAS
First citationDeshmukh, M. B., Salunkhe, S. M., Patil, D. R. & Anbhule, P. V. (2009). Eur. J. Med. Chem. 44, 2651–2654.  Web of Science CrossRef PubMed CAS
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationJagodzinski, T. S. (2003). Chem. Rev. 103, 197–227.  Web of Science CrossRef PubMed CAS
First citationJiang, J.-H. (2009). Acta Cryst. E65, o52.  Web of Science CSD CrossRef IUCr Journals
First citationLebana, S. T., Sultana, R. & Hendal, G. (2008). Polyhedron, 27, 1008–1016.
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
First citationPatil, D. R., Salunkhe, S. M., Aitawade, M. M., Deshmukh, M. B., Kolekar, G. B. & Anbhule, P. V. (2011). Pharma Chem. 3, 207–214.  CAS
First citationRudrof, W. D., Schierhorn, A. & Augustin, M. (1979). Tetrahedron, 35, 551–556.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationXu, L.-Z., Yang, S.-H., Zhu, C.-Y., Li, K. & Liu, F.-Q. (2005). Acta Cryst. E61, o259–o260.  Web of Science CSD CrossRef CAS IUCr Journals
First citationZahid, M., Yasin, K. A., Akhtar, T., Rama, N. H., Hameed, S., Al Masoudi, N. A., Loddo, R. & La Colla, P. (2009). Arkivoc, xi, 85–93.  CrossRef

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 7| July 2013| Pages o1173-o1174
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds