

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2Z)-3-(2,4-Dichlorophenyl)-3-hydroxy-N-phenylprop-2-enethioamide

Dalbir Kour,^a Kuldeep Singh,^a Mayur M. Aitawade,^b Madhukar B. Deshmukh,^c Prashant V. Anbhule,^c Vivek K. Gupta^a and Rajni Kant^a*

^aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, ^bDepartment of Agrochemicals & Pest Management, Shivaji University, Kolhapur, India, and ^cDepartment of Chemistry, Shivaji University, Kolhapur, India Correspondence e-mail: rkvk.paper11@gmail.com

Received 17 June 2013; accepted 24 June 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.091; data-to-parameter ratio = 15.3.

In the title molecule, C₁₅H₁₁Cl₂NOS, the dihedral angle between the phenyl and benzene rings is $72.24 (1)^{\circ}$. In the crystal, pairs of N-H···S hydrogen bonds form dimers with twofold rotational symmetry. The dimers are connected by weak C-H···O hydrogen bonds, forming a two-dimensional network parallel to (001). An intramolecular O-H···S hydrogen bond is also observed.

Related literature

For the biological activity and applications of thioamides, see: Zahid et al. (2009); Jagodzinski (2003); Lebana et al. (2008). For the synthesis of thioamides, see: Bauer & Kuhlein (1985); Cava & Levinson (1985). For the synthesis of the title compound, see: Rudrof et al. (1979). For related structures, see: Xu et al. (2005); Cowley et al. (2002); Jiang (2009); Patil et al. (2011); Deshmukh et al. (2009). For standard bond-length data, see: Allen et al. (1987).

Experimental

Crystal data	
C ₁₅ H ₁₁ Cl ₂ NOS	a = 28.9562 (6) Å
$M_r = 324.21$	b = 13.2610 (3) Å
Orthorhombic, Pccn	c = 7.5284 (2) Å

V = 2890.82 (12) Å³ 7 - 8Mo $K\alpha$ radiation

Data collection

Agilent Xcalibur Sapphire3
diffractometer
Absorption correction: multi-scan
(CrysAlis PRO; Oxford
Diffraction, 2010)
$T_{\min} = 0.835, \ T_{\max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ H atoms treated by a mixture of $wR(F^2) = 0.091$ independent and constrained S = 1.11refinement $\Delta \rho_{\rm max} = 0.22 \text{ e } \text{\AA}^{-3}$ 2836 reflections $\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$ 185 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1\cdots S1^{i}$ $C3'-H3'\cdots O1^{ii}$ $O1-H11\cdots S1$	0.86 0.93 0.89 (3)	2.61 2.59 2.10 (3)	3.4397 (18) 3.496 (3) 2.9315 (18)	162 164 157 (2)
	. 1 . 1	(**)	. 1 . 1	

Symmetry codes: (i) $-x + \frac{1}{2}, -y + \frac{1}{2}, z$; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

RK is thankful to the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/ CMP-47/2003.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5625).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bauer, W. & Kuhlein, K. (1985). Houben-Weyl Methoden der Organischen Chemie, Vol. E5, p. 1218. Stuttgart, New York: Georg Thieme Verlag.
- Cava, M. P. & Levinson, M. I. (1985). Tetrahedron, 41, 5061-5087.
- Cowley, A. R., Dilworth, J. R. & Dorinelly, P. S. (2002). J. Am. Chem. Soc. 124, 5270-5271
- Deshmukh, M. B., Salunkhe, S. M., Patil, D. R. & Anbhule, P. V. (2009). Eur. J. Med. Chem. 44, 2651-2654.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Jagodzinski, T. S. (2003). Chem. Rev. 103, 197-227.
- Jiang, J.-H. (2009). Acta Cryst. E65, o52.
- Lebana, S. T., Sultana, R. & Hendal, G. (2008). Polyhedron, 27, 1008-1016.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Patil, D. R., Salunkhe, S. M., Aitawade, M. M., Deshmukh, M. B., Kolekar, G. B. & Anbhule, P. V. (2011). Pharma Chem. 3, 207-214.
- Rudrof, W. D., Schierhorn, A. & Augustin, M. (1979). Tetrahedron, 35, 551-556

63107 measured reflections 2836 independent reflections

2275 reflections with $I > 2\sigma(I)$

 $\mu = 0.59 \text{ mm}^{-1}$ T = 293 K

 $R_{\rm int} = 0.067$

 $0.3 \times 0.2 \times 0.1 \text{ mm}$

organic compounds

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Spek, A. L. (2009). Acta Cryst. D65, 148–155.
 Xu, L.-Z., Yang, S.-H., Zhu, C.-Y., Li, K. & Liu, F.-Q. (2005). Acta Cryst. E61, 0259–0260.
- Zahid, M., Yasin, K. A., Akhtar, T., Rama, N. H., Hameed, S., Al Masoudi, N. A., Loddo, R. & La Colla, P. (2009). *Arkivoc*, **xi**, 85–93.

supporting information

Acta Cryst. (2013). E**69**, o1173–o1174 [https://doi.org/10.1107/S1600536813017339]

(2Z)-3-(2,4-Dichlorophenyl)-3-hydroxy-N-phenylprop-2-enethioamide

Dalbir Kour, Kuldeep Singh, Mayur M. Aitawade, Madhukar B. Deshmukh, Prashant V. Anbhule, Vivek K. Gupta and Rajni Kant

S1. Comment

Thioamides exhibit a wide range of applications, not only as synthetic intermediates in the synthesis of a variety of hetero-cyclic compounds (Zahid *et al.*, 2009), but also numerous biological activities have been associated with them (Jagodzinski, 2003). Moreover, thioamides are important ligands in the field of coordination chemistry (Lebana *et al.*, 2008). Several synthetic reports on thioamides have been published involving the uses of Lawesson's regent (Cava & Levinson, 1985) and phosphorus pentasulfide (Bauer & Kuhlein, 1985). Our ongoing research involves the development of newer synthetic methodologies for heterocyclic compounds (Patil *et al.*, 2011; Deshmukh *et al.*, 2009). The crystal structure of the title compound is described herein.

The molecular structure of the title compound (I) is shown in Fig. 1. The bond lengths (Allen, *et al.*, 1987) and angles observed in (I) show normal values and are comparable with related structures (Xu, *et al.*, 2005; Jiang, 2009). The dihedral angle between the phenyl and benzene rings [C1'-C6' and C4-C9] is 72.24 (1)°. The two chlorine atoms Cl1 and Cl2 which were not included in the calculation of the least-squares plane of the C1'-C6' ring, deviate from the plane by 0.1336 (1) and 0.0310 (1) Å. The C1—S1 bond length of 1.695 (2) Å is comparable with the value [1.688 (2) Å] in a related structure (Cowley *et al.*, 2002). In the crystal, pairs of N—H···S hydrogen bonds form dimers with twofold rotational symmetry. The dimers are connected by weak C—H···O hydrogen bonds to form a two-dimensional network parallel to (001). An intramolecular O—H···S hydrogen bond is also observed. The hydrogen bonds are shown in Fig. 2.

S2. Experimental

(2*Z*)-3-(2,4-dichlorophenyl)-3-hydroxy-*N*-phenylprop-2-enethioamide was synthesized by a previously reported procedure (Rudrof *et al.*, 1979). The product dissolved in EtOH, on slow evaporation of the solvent formed crystals of the title compound. Yield: 85%. IR (KBr): 3442, 3207, 1607, 1364, 1224 cm-1. 1H NMR (300 MHz, CDCl3): dH = 5.97 (s, 1H, CH), 7.19–7.53 (m, 8H, Ar—H),8.29 (bs, 1H, NH), 14.75 (s, 1H, OH). 13 C NMR (CDCl3): dc = 136.3, 133.7, 132.6, 131.2, 137.0, 130.9, 129.4, 128.8, 127.5, 127.1, 126.8, 125.2, 123.1. (m/z) = 324.

S3. Refinement

Hydrogen atom H11 bonded to O1 was located in a difference Fourier map and was refined independently with an isotropic displacement parameter. All other H atoms were positioned geometrically and were treated as riding on their parent atoms, with C—H = 0.93 Å, N—H = 0.86Å and $U_{iso}(H)=1.2U_{eq}(C,N)$.

Figure 1

The molecular structure of (I) with displacement ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

Figure 2

Part of the crystal structure with hydrogen bonds shown as dotted lines.

(2Z)-3-(2,4-Dichlorophenyl)-3-hydroxy-N-phenylprop-2-enethioamide

Crystal data

C₁₅H₁₁Cl₂NOS $M_r = 324.21$ Orthorhombic, *Pccn* Hall symbol: -P 2ab 2ac a = 28.9562 (6) Å b = 13.2610 (3) Å c = 7.5284 (2) Å V = 2890.82 (12) Å³ Z = 8

Data collection

Agilent Xcalibur Sapphire3	63107 measured reflections
diffractometer	2836 independent reflections
Radiation source: fine-focus sealed tube	2275 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.067$
Detector resolution: 16.1049 pixels mm ⁻¹	$\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 3.4^\circ$
ω scan	$h = -35 \rightarrow 35$
Absorption correction: multi-scan	$k = -16 \rightarrow 16$
(CrysAlis PRO; Oxford Diffraction, 2010)	$l = -9 \rightarrow 9$
$T_{\min} = 0.835, \ T_{\max} = 1.000$	
Refinament	

F(000) = 1328

 $\theta = 3.4 - 29.1^{\circ}$

 $\mu = 0.59 \text{ mm}^{-1}$ T = 293 K

Block, orange $0.3 \times 0.2 \times 0.1 \text{ mm}$

 $D_{\rm x} = 1.490 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 24816 reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.091$	neighbouring sites
<i>S</i> = 1.11	H atoms treated by a mixture of independent
2836 reflections	and constrained refinement
185 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0293P)^2 + 2.0935P]$
0 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.22 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\min} = -0.18 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. *CrysAlis PRO*, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	0.31822 (2)	0.16889 (5)	0.20313 (10)	0.04414 (18)

O1	0.41937 (6)	0.17165 (12)	0.2188 (3)	0.0476 (5)
N1	0.29969 (6)	0.36160 (14)	0.2171 (3)	0.0391 (5)
H1	0.2719	0.3391	0.2114	0.047*
Cl1	0.44813 (2)	0.49703 (5)	0.15039 (11)	0.0581 (2)
Cl2	0.61091 (2)	0.40683 (7)	0.43216 (13)	0.0718 (3)
C1	0.33303 (8)	0.29196 (17)	0.2249 (3)	0.0338 (5)
C1′	0.46507 (7)	0.31015 (16)	0.2953 (3)	0.0320 (5)
C2	0.37934 (7)	0.32640 (17)	0.2576 (3)	0.0333 (5)
H2	0.3828	0.3945	0.2840	0.040*
C2′	0.48099 (8)	0.40787 (17)	0.2622 (3)	0.0360 (5)
C3	0.41830 (7)	0.27056 (16)	0.2540 (3)	0.0315 (5)
C3′	0.52538 (8)	0.43770 (19)	0.3058 (3)	0.0430 (6)
H3′	0.5351	0.5033	0.2834	0.052*
C4	0.30453 (7)	0.46842 (17)	0.2172 (3)	0.0343 (5)
C4′	0.55494 (8)	0.3693 (2)	0.3827 (3)	0.0440 (6)
C5	0.28010 (8)	0.5236 (2)	0.3398 (4)	0.0463 (6)
Н5	0.2619	0.4912	0.4241	0.056*
C5′	0.54086 (8)	0.2721 (2)	0.4168 (4)	0.0478 (7)
H5′	0.5610	0.2261	0.4685	0.057*
C6	0.28268 (10)	0.6273 (2)	0.3371 (4)	0.0565 (8)
H6	0.2661	0.6647	0.4200	0.068*
C6′	0.49660 (8)	0.2442 (2)	0.3733 (3)	0.0404 (6)
H6′	0.4873	0.1784	0.3969	0.048*
C7	0.30932 (10)	0.6760 (2)	0.2137 (4)	0.0534 (7)
H7	0.3111	0.7460	0.2134	0.064*
C8	0.33346 (9)	0.6208 (2)	0.0902 (4)	0.0476 (7)
H8	0.3515	0.6537	0.0062	0.057*
C9	0.33111 (8)	0.51666 (18)	0.0900 (3)	0.0401 (6)
H9	0.3472	0.4795	0.0055	0.048*
H11	0.3902 (11)	0.152 (2)	0.210 (4)	0.070 (10)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0340 (3)	0.0307 (3)	0.0677 (4)	-0.0066 (3)	0.0007 (3)	0.0007 (3)
01	0.0327 (10)	0.0286 (9)	0.0816 (13)	0.0008 (7)	0.0009 (9)	-0.0031 (9)
N1	0.0216 (10)	0.0322 (10)	0.0636 (14)	-0.0034 (8)	-0.0027 (9)	0.0025 (10)
Cl1	0.0339 (3)	0.0381 (3)	0.1022 (6)	-0.0011 (3)	-0.0061 (4)	0.0241 (4)
Cl2	0.0333 (4)	0.0834 (6)	0.0989 (6)	-0.0046 (4)	-0.0186 (4)	-0.0110 (5)
C1	0.0319 (13)	0.0313 (12)	0.0382 (13)	-0.0035 (10)	0.0017 (10)	0.0014 (10)
C1′	0.0279 (11)	0.0327 (12)	0.0354 (12)	0.0031 (9)	0.0028 (9)	0.0003 (10)
C2	0.0292 (12)	0.0258 (11)	0.0451 (13)	-0.0016 (9)	0.0008 (10)	0.0000 (10)
C2′	0.0298 (12)	0.0331 (12)	0.0452 (13)	0.0025 (10)	0.0006 (10)	0.0015 (11)
C3	0.0303 (12)	0.0268 (12)	0.0375 (12)	0.0001 (9)	0.0028 (10)	0.0023 (10)
C3′	0.0322 (13)	0.0378 (13)	0.0591 (16)	-0.0023 (11)	-0.0001 (12)	-0.0034 (12)
C4	0.0236 (11)	0.0310 (12)	0.0484 (14)	0.0020 (9)	-0.0073 (10)	0.0016 (11)
C4′	0.0270 (13)	0.0569 (16)	0.0480 (15)	-0.0003 (11)	-0.0039 (11)	-0.0075 (13)
C5	0.0357 (14)	0.0479 (15)	0.0552 (16)	0.0073 (11)	0.0058 (12)	0.0036 (13)

supporting information

C5′	0.0363 (14)	0.0518 (17)	0.0552 (16)	0.0091 (12)	-0.0079 (12)	0.0076 (13)
C6	0.0555 (18)	0.0457 (16)	0.069 (2)	0.0163 (14)	-0.0018 (15)	-0.0087 (15)
C6′	0.0343 (13)	0.0391 (13)	0.0477 (14)	0.0028 (11)	0.0003 (11)	0.0094 (12)
C7	0.0519 (17)	0.0324 (14)	0.076 (2)	0.0054 (12)	-0.0157 (15)	0.0011 (14)
C8	0.0381 (14)	0.0434 (15)	0.0613 (17)	-0.0052 (11)	-0.0074 (13)	0.0148 (13)
C9	0.0301 (13)	0.0420 (14)	0.0481 (14)	0.0000 (10)	-0.0002 (11)	0.0021 (12)

Geometric parameters (Å, °)

S1—C1	1.695 (2)	С3′—НЗ′	0.9300
O1—C3	1.339 (3)	C4—C5	1.374 (3)
O1—H11	0.89 (3)	C4—C9	1.385 (3)
N1—C1	1.337 (3)	C4′—C5′	1.376 (4)
N1C4	1.423 (3)	C5—C6	1.377 (4)
N1—H1	0.8600	С5—Н5	0.9300
Cl1—C2′	1.735 (2)	C5′—C6′	1.374 (3)
Cl2—C4′	1.736 (2)	С5′—Н5′	0.9300
C1—C2	1.438 (3)	C6—C7	1.369 (4)
C1′—C6′	1.394 (3)	С6—Н6	0.9300
C1′—C2′	1.398 (3)	Сб'—Нб'	0.9300
C1′—C3	1.485 (3)	C7—C8	1.374 (4)
C2—C3	1.350 (3)	С7—Н7	0.9300
C2—H2	0.9300	C8—C9	1.382 (3)
C2′—C3′	1.384 (3)	C8—H8	0.9300
C3′—C4′	1.375 (3)	С9—Н9	0.9300
C3—O1—H11	106 (2)	C3'—C4'—C5'	120.8 (2)
C1—N1—C4	128.05 (19)	C3'—C4'—Cl2	118.8 (2)
C1—N1—H1	116.0	C5'—C4'—Cl2	120.3 (2)
C4—N1—H1	116.0	C4—C5—C6	119.6 (3)
N1—C1—C2	117.5 (2)	C4—C5—H5	120.2
N1—C1—S1	118.57 (17)	С6—С5—Н5	120.2
C2-C1-S1	123.93 (17)	C6'—C5'—C4'	119.0 (2)
C6'—C1'—C2'	116.2 (2)	C6'—C5'—H5'	120.5
C6'—C1'—C3	117.6 (2)	C4′—C5′—H5′	120.5
C2′—C1′—C3	126.2 (2)	C7—C6—C5	120.7 (3)
C3—C2—C1	127.0 (2)	С7—С6—Н6	119.6
C3—C2—H2	116.5	С5—С6—Н6	119.6
C1—C2—H2	116.5	C5'—C6'—C1'	122.8 (2)
C3′—C2′—C1′	121.9 (2)	С5′—С6′—Н6′	118.6
C3′—C2′—Cl1	115.43 (18)	C1′—C6′—H6′	118.6
C1′—C2′—Cl1	122.49 (18)	C6—C7—C8	119.7 (3)
O1—C3—C2	124.1 (2)	С6—С7—Н7	120.2
O1—C3—C1′	111.51 (18)	С8—С7—Н7	120.2
C2—C3—C1′	124.3 (2)	C7—C8—C9	120.5 (3)
C4'—C3'—C2'	119.3 (2)	С7—С8—Н8	119.7
C4'—C3'—H3'	120.3	С9—С8—Н8	119.7
C2'—C3'—H3'	120.3	C8—C9—C4	119.2 (2)

supporting information

C5—C4—C9 C5—C4—N1 C9—C4—N1	120.3 (2) 118.7 (2) 120.9 (2)	C8—C9—H9 C4—C9—H9	120.4 120.4
C4—N1—C1—C2	7.8 (4)	C1—N1—C4—C9	56.9 (4)
C4—N1—C1—S1	-174.3 (2)	C2'—C3'—C4'—C5'	-0.1(4)
N1—C1—C2—C3	-173.3 (2)	C2'—C3'—C4'—Cl2	178.55 (19)
S1—C1—C2—C3	8.9 (4)	C9—C4—C5—C6	-0.9 (4)
C6'—C1'—C2'—C3'	-0.6 (3)	N1-C4-C5-C6	-177.1 (2)
C3—C1′—C2′—C3′	180.0 (2)	C3'—C4'—C5'—C6'	-0.2 (4)
C6'—C1'—C2'—Cl1	174.85 (18)	Cl2—C4′—C5′—C6′	-178.9 (2)
C3—C1′—C2′—Cl1	-4.6 (3)	C4—C5—C6—C7	0.0 (4)
C1-C2-C3-O1	-0.2 (4)	C4'—C5'—C6'—C1'	0.1 (4)
C1—C2—C3—C1′	-177.8 (2)	C2'—C1'—C6'—C5'	0.3 (4)
C6'—C1'—C3—O1	-29.6 (3)	C3—C1′—C6′—C5′	179.7 (2)
C2'—C1'—C3—O1	149.8 (2)	C5—C6—C7—C8	0.5 (4)
C6'—C1'—C3—C2	148.2 (2)	C6—C7—C8—C9	-0.1 (4)
C2'—C1'—C3—C2	-32.4 (4)	C7—C8—C9—C4	-0.8 (4)
C1'-C2'-C3'-C4'	0.5 (4)	C5—C4—C9—C8	1.3 (4)
Cl1—C2'—C3'—C4'	-175.2 (2)	N1—C4—C9—C8	177.4 (2)
C1—N1—C4—C5	-126.9 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
N1—H1···S1 ⁱ	0.86	2.61	3.4397 (18)	162
C3'—H3'…O1 ⁱⁱ	0.93	2.59	3.496 (3)	164
01—H11…S1	0.89 (3)	2.10 (3)	2.9315 (18)	157 (2)

Symmetry codes: (i) -*x*+1/2, -*y*+1/2, *z*; (ii) -*x*+1, *y*+1/2, -*z*+1/2.