organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2-[(1,3-Benzo­thia­zol-2-yl)meth­­oxy]-5-chloro­phen­yl}(4-chloro­phen­yl)methan­one

aDepartment of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa, and bEquipe Chimie du Solide et Matériaux, UMR 6226 Institut des Sciences, Université de Rennes 1, Campus de Beaulieu, Avenue du Général Leclerc, 35042 Rennes cedex, France
*Correspondence e-mail: katharigattav@dut.ac.za, nksusa@gmail.com

(Received 12 May 2013; accepted 11 June 2013; online 19 June 2013)

In the title compound, C21H13Cl2NO2S, the benzo­thia­zole ring makes dihedral angles of 0.94 (1) and 70.65 (5)° with the 4-chloro­phenyl­methanone unit and the 5-chloro­phenyl ring, respectively. The dihedral angle between the 4-chloro­phenyl­methanone unit and the 5-chloro­phenyl ring is 66.20 (5)°. The crystal structure consists of dimeric units generated by C—H⋯N hydrogen bonds, further linked by C—H⋯O and C—H⋯π inter­actions, leading to a three-dimensional network.

Related literature

For crystal structures of benzo­thia­zole derivatives, see: Venugopala et al. (2012[Venugopala, K. N., Nayak, S. K., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2012). Acta Cryst. E68, o3125.]); Nayak et al. (2013[Nayak, S. K., Venugopala, K. N., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2013). Acta Cryst. E69, o70.]). For background to the applications of benzo­thia­zole derivatives, see: Rana et al. (2007[Rana, A., Siddiqui, N. & Khan, S. A. (2007). Indian J. Pharm. Sci. 69, 10-17.]); Saeed et al. (2010[Saeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323-1331.]); Kelarev et al. (2003[Kelarev, V. I., Kobrakov, K. I. & Rybina, I. I. (2003). Chem. Heterocycl. Compd, 39, 1267-1306.]); Telvekar et al. (2012[Telvekar, V. N., Bairwa, V. K., Satardekar, K. & Bellubi, A. (2012). Bioorg. Med. Chem. Lett. 22, 649-652.]).

[Scheme 1]

Experimental

Crystal data
  • C21H13Cl2NO2S

  • Mr = 414.29

  • Monoclinic, P 21 /n

  • a = 13.6452 (4) Å

  • b = 7.47005 (19) Å

  • c = 18.7286 (6) Å

  • β = 105.772 (3)°

  • V = 1837.14 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 292 K

  • 0.23 × 0.21 × 0.14 mm

Data collection
  • Oxford Diffraction Xcalibur (Eos, Nova) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.897, Tmax = 0.935

  • 18937 measured reflections

  • 3602 independent reflections

  • 2544 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.109

  • S = 1.08

  • 3602 reflections

  • 241 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the S1/C1/C6/N1/C7 thia­zole ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.93 2.56 3.429 (3) 157
C17—H17⋯N1ii 0.93 2.62 3.442 (3) 148
C18—H18⋯Cgiii 0.93 2.83 3.682 (2) 152
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Substituted benzothiazole derivatives have been reported to exhibit various pharmacological properties such as analgesic, antibacterial, antifungal, antidepressant, antitumor, antihypertensive, anthelmintic, and herbicidal activity (Kelarev et al. (2003)). However, the variety of biological and structural features of new benzothiazole derivatives is of great scientific interest (Rana et al. (2007); Telvekar et al. (2012); Saeed et al. (2010) and Nayak et al. (2013)). In continuation of our interest on such molecules (Venugopala et al. (2012)) here, we report the single-crystal structure of the title compound.

In the title molecule (Fig. 1), the benzothiazole ring makes dihedral angles of 0.94 (1)° and 70.65 (5)° with the 4-chlorophenylmethanone unit and the 5-chlorophenyl ring, respectively. The dihedral angle between the 4-chlorophenylmethanone unit and the 5-chlorophenyl ring is 66.20 (5)°. The crystal structure consists of dimeric units generated by C–H···N hydrogen bonds, further linked by C–H···O and C–H···π interactions, which lead to a three-dimensional network (Table 1 and Fig. 2, Cg is the centroid of the S1/C1/C6/N1/C7 thiazole ring). The crystal structure consists of dimeric units generated by C–H···N hydrogen bonds, further linked by C–H···O and C–H···π interactions, which lead to a three-dimensional network (Table 1 and Fig. 2).

Related literature top

For crystal structures of benzothiazole derivatives, see: Venugopala et al. (2012); Nayak et al. (2013). For background to the applications of benzothiazole derivatives, see: Rana et al. (2007); Saeed et al. (2010); Kelarev et al. (2003); Telvekar et al. (2012).

Experimental top

A mixture of (2-chloromethyl)benzo[d]thiazole (1 mmol) and (5-chloro-2-hydroxyphenyl)(4-chlorophenyl)methanone (1 mmol) and in dry THF, dry potassium carbonate (1 mmol) was added and stirred at room temperature. The reaction mixture was added and the reaction mixture was stirred at room temperature for 14 h. The reaction mixture was concentrated to remove the solvent, diluted with ethyl acetate, washed with water, brine solution and dried over anhydrous sodium sulfate. The organic layer was concentrated to yield a residue which was purified by column chromatography using ethyl acetate and n-hexane as eluent (7:3, Rf = 0.73) to afford the product in 83% as a brown solid (m. p. 448 (2) K). Suitable crystals for single-crystal X-ray study were obtained from dichloromethane solvent using slow evaporation technique at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å for aryl and 0.99 Å for methylene H atoms. Uiso(H) = 1.2Ueq(C) for aryl and methylene H atoms.

Structure description top

Substituted benzothiazole derivatives have been reported to exhibit various pharmacological properties such as analgesic, antibacterial, antifungal, antidepressant, antitumor, antihypertensive, anthelmintic, and herbicidal activity (Kelarev et al. (2003)). However, the variety of biological and structural features of new benzothiazole derivatives is of great scientific interest (Rana et al. (2007); Telvekar et al. (2012); Saeed et al. (2010) and Nayak et al. (2013)). In continuation of our interest on such molecules (Venugopala et al. (2012)) here, we report the single-crystal structure of the title compound.

In the title molecule (Fig. 1), the benzothiazole ring makes dihedral angles of 0.94 (1)° and 70.65 (5)° with the 4-chlorophenylmethanone unit and the 5-chlorophenyl ring, respectively. The dihedral angle between the 4-chlorophenylmethanone unit and the 5-chlorophenyl ring is 66.20 (5)°. The crystal structure consists of dimeric units generated by C–H···N hydrogen bonds, further linked by C–H···O and C–H···π interactions, which lead to a three-dimensional network (Table 1 and Fig. 2, Cg is the centroid of the S1/C1/C6/N1/C7 thiazole ring). The crystal structure consists of dimeric units generated by C–H···N hydrogen bonds, further linked by C–H···O and C–H···π interactions, which lead to a three-dimensional network (Table 1 and Fig. 2).

For crystal structures of benzothiazole derivatives, see: Venugopala et al. (2012); Nayak et al. (2013). For background to the applications of benzothiazole derivatives, see: Rana et al. (2007); Saeed et al. (2010); Kelarev et al. (2003); Telvekar et al. (2012).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C–H···N, C–H..O and C–H···π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i)x-1/2,-y+3/2,z-1/2; (ii)-x+1,-y+1,-z+1; (iii)x,y-1, z]
{2-[(1,3-Benzothiazol-2-yl)methoxy]-5-chlorophenyl}(4-chlorophenyl)methanone top
Crystal data top
C21H13Cl2NO2SF(000) = 848
Mr = 414.29Dx = 1.498 Mg m3
Monoclinic, P21/nMelting point: 448(2) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.7107 Å
a = 13.6452 (4) ÅCell parameters from 340 reflections
b = 7.47005 (19) Åθ = 1.0–28.0°
c = 18.7286 (6) ŵ = 0.48 mm1
β = 105.772 (3)°T = 292 K
V = 1837.14 (9) Å3Plate, colourless
Z = 40.23 × 0.21 × 0.14 mm
Data collection top
Oxford Diffraction Xcalibur (Eos, Nova)
diffractometer
3602 independent reflections
Radiation source: Mova (Mo) X-ray Source2544 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.047
Detector resolution: 16.0839 pixels mm-1θmax = 26.0°, θmin = 3.0°
ω scansh = 1616
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 99
Tmin = 0.897, Tmax = 0.935l = 2322
18937 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difference Fourier map
wR(F2) = 0.109H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.3056P]
where P = (Fo2 + 2Fc2)/3
3602 reflections(Δ/σ)max = 0.001
241 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C21H13Cl2NO2SV = 1837.14 (9) Å3
Mr = 414.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.6452 (4) ŵ = 0.48 mm1
b = 7.47005 (19) ÅT = 292 K
c = 18.7286 (6) Å0.23 × 0.21 × 0.14 mm
β = 105.772 (3)°
Data collection top
Oxford Diffraction Xcalibur (Eos, Nova)
diffractometer
3602 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2544 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 0.935Rint = 0.047
18937 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.08Δρmax = 0.24 e Å3
3602 reflectionsΔρmin = 0.29 e Å3
241 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.03821 (5)0.35913 (10)0.66313 (5)0.0683 (2)
Cl20.27764 (6)0.15904 (12)0.68234 (5)0.0776 (3)
S10.41607 (5)0.64525 (9)0.62033 (3)0.0465 (2)
O10.61507 (12)0.6008 (2)0.61055 (9)0.0449 (4)
O20.75637 (13)0.4439 (3)0.80903 (9)0.0571 (5)
N10.39772 (14)0.8383 (2)0.50261 (9)0.0357 (4)
C10.29751 (17)0.7360 (3)0.57862 (12)0.0384 (5)
C20.20652 (19)0.7169 (3)0.59779 (13)0.0496 (7)
H20.20330.64940.63880.060*
C30.12177 (14)0.8006 (3)0.55448 (11)0.0551 (7)
H30.06000.78920.56610.066*
C40.12656 (14)0.9025 (3)0.49327 (11)0.0524 (7)
H40.06810.95920.46520.063*
C50.21558 (18)0.9210 (3)0.47357 (12)0.0433 (6)
H50.21790.98910.43250.052*
C60.30286 (17)0.8354 (3)0.51649 (11)0.0344 (5)
C70.46196 (17)0.7448 (3)0.55169 (11)0.0335 (5)
C80.56983 (17)0.7178 (3)0.55111 (12)0.0410 (6)
H8A0.57290.66580.50430.049*
H8B0.60560.83150.55740.049*
C90.71332 (16)0.5456 (3)0.61952 (12)0.0359 (5)
C100.76869 (18)0.5827 (3)0.56916 (13)0.0423 (6)
H100.73870.64680.52620.051*
C110.86790 (19)0.5250 (3)0.58258 (14)0.0476 (6)
H110.90460.54900.54850.057*
C120.91267 (17)0.4315 (3)0.64669 (15)0.0455 (6)
C130.85941 (17)0.3962 (3)0.69754 (13)0.0406 (6)
H130.89100.33560.74110.049*
C140.75846 (16)0.4504 (3)0.68441 (12)0.0352 (5)
C150.70758 (17)0.4179 (3)0.74501 (13)0.0364 (5)
C160.60070 (17)0.3519 (3)0.72806 (11)0.0328 (5)
C170.55910 (17)0.2434 (3)0.66717 (12)0.0375 (5)
H170.59750.21370.63480.045*
C180.46132 (18)0.1796 (3)0.65457 (13)0.0413 (6)
H180.43430.10340.61480.050*
C190.40357 (17)0.2297 (3)0.70148 (13)0.0426 (6)
C200.44320 (18)0.3374 (3)0.76184 (13)0.0435 (6)
H200.40350.37050.79290.052*
C210.54231 (18)0.3957 (3)0.77580 (12)0.0388 (6)
H210.57040.46500.81760.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0348 (4)0.0681 (5)0.1045 (6)0.0057 (3)0.0233 (4)0.0048 (4)
Cl20.0439 (5)0.0873 (6)0.1010 (6)0.0192 (4)0.0186 (4)0.0089 (5)
S10.0465 (4)0.0513 (4)0.0448 (4)0.0111 (3)0.0174 (3)0.0183 (3)
O10.0344 (9)0.0520 (10)0.0520 (10)0.0117 (8)0.0180 (8)0.0215 (8)
O20.0495 (11)0.0790 (14)0.0378 (10)0.0129 (10)0.0032 (9)0.0004 (9)
N10.0373 (11)0.0370 (11)0.0321 (10)0.0027 (8)0.0084 (9)0.0035 (8)
C10.0397 (14)0.0370 (13)0.0398 (13)0.0046 (10)0.0131 (11)0.0034 (10)
C20.0507 (17)0.0545 (16)0.0502 (15)0.0031 (13)0.0245 (13)0.0062 (13)
C30.0427 (16)0.0652 (18)0.0626 (18)0.0036 (13)0.0231 (14)0.0006 (14)
C40.0386 (15)0.0629 (18)0.0525 (16)0.0123 (13)0.0068 (13)0.0026 (13)
C50.0421 (15)0.0465 (14)0.0390 (14)0.0040 (11)0.0068 (12)0.0054 (11)
C60.0379 (14)0.0325 (12)0.0327 (12)0.0002 (10)0.0093 (11)0.0035 (10)
C70.0366 (13)0.0302 (12)0.0340 (12)0.0004 (10)0.0102 (10)0.0004 (10)
C80.0385 (14)0.0431 (14)0.0422 (14)0.0059 (11)0.0123 (11)0.0114 (11)
C90.0321 (13)0.0318 (12)0.0454 (14)0.0011 (10)0.0131 (11)0.0007 (10)
C100.0433 (15)0.0406 (14)0.0468 (14)0.0005 (11)0.0187 (12)0.0018 (11)
C110.0454 (15)0.0439 (15)0.0608 (16)0.0051 (12)0.0270 (13)0.0046 (13)
C120.0309 (13)0.0403 (14)0.0673 (17)0.0023 (11)0.0166 (13)0.0105 (13)
C130.0348 (14)0.0359 (13)0.0487 (14)0.0006 (10)0.0073 (12)0.0020 (11)
C140.0320 (13)0.0300 (12)0.0433 (13)0.0014 (10)0.0100 (11)0.0038 (10)
C150.0376 (14)0.0318 (12)0.0377 (14)0.0040 (10)0.0066 (11)0.0034 (10)
C160.0354 (13)0.0303 (12)0.0313 (12)0.0020 (10)0.0065 (10)0.0043 (9)
C170.0453 (15)0.0316 (13)0.0371 (13)0.0047 (11)0.0136 (11)0.0012 (10)
C180.0437 (15)0.0339 (13)0.0440 (14)0.0028 (11)0.0078 (12)0.0039 (10)
C190.0327 (13)0.0417 (14)0.0516 (15)0.0038 (11)0.0083 (12)0.0077 (12)
C200.0440 (15)0.0500 (15)0.0406 (14)0.0002 (12)0.0184 (12)0.0038 (11)
C210.0452 (15)0.0412 (14)0.0295 (12)0.0018 (11)0.0094 (11)0.0014 (10)
Geometric parameters (Å, º) top
Cl1—C121.742 (2)C9—C101.387 (3)
Cl2—C191.739 (2)C9—C141.398 (3)
S1—C11.732 (2)C10—C111.377 (3)
S1—C71.742 (2)C10—H100.9300
O1—C91.369 (2)C11—C121.380 (3)
O1—C81.418 (3)C11—H110.9300
O2—C151.218 (3)C12—C131.372 (3)
N1—C71.290 (3)C13—C141.392 (3)
N1—C61.388 (3)C13—H130.9300
C1—C21.390 (3)C14—C151.502 (3)
C1—C61.399 (3)C15—C161.490 (3)
C2—C31.370 (3)C16—C171.389 (3)
C2—H20.9300C16—C211.389 (3)
C3—C41.3923C17—C181.375 (3)
C3—H30.9300C17—H170.9300
C4—C51.369 (3)C18—C191.382 (3)
C4—H40.9300C18—H180.9300
C5—C61.398 (3)C19—C201.373 (3)
C5—H50.9300C20—C211.376 (3)
C7—C81.489 (3)C20—H200.9300
C8—H8A0.9700C21—H210.9300
C8—H8B0.9700
C1—S1—C788.81 (11)C9—C10—H10119.9
C9—O1—C8119.01 (16)C10—C11—C12119.9 (2)
C7—N1—C6110.21 (18)C10—C11—H11120.1
C2—C1—C6121.4 (2)C12—C11—H11120.1
C2—C1—S1129.33 (18)C13—C12—C11120.6 (2)
C6—C1—S1109.22 (17)C13—C12—Cl1119.9 (2)
C3—C2—C1118.0 (2)C11—C12—Cl1119.50 (19)
C3—C2—H2121.0C12—C13—C14120.5 (2)
C1—C2—H2121.0C12—C13—H13119.8
C2—C3—C4121.07 (13)C14—C13—H13119.8
C2—C3—H3119.5C13—C14—C9118.9 (2)
C4—C3—H3119.5C13—C14—C15117.2 (2)
C5—C4—C3121.37 (13)C9—C14—C15123.62 (19)
C5—C4—H4119.3O2—C15—C16120.2 (2)
C3—C4—H4119.3O2—C15—C14118.5 (2)
C4—C5—C6118.6 (2)C16—C15—C14121.3 (2)
C4—C5—H5120.7C17—C16—C21119.2 (2)
C6—C5—H5120.7C17—C16—C15121.8 (2)
N1—C6—C5125.3 (2)C21—C16—C15119.0 (2)
N1—C6—C1115.25 (19)C18—C17—C16120.3 (2)
C5—C6—C1119.5 (2)C18—C17—H17119.9
N1—C7—C8123.36 (19)C16—C17—H17119.9
N1—C7—S1116.50 (17)C17—C18—C19119.4 (2)
C8—C7—S1120.13 (16)C17—C18—H18120.3
O1—C8—C7107.34 (17)C19—C18—H18120.3
O1—C8—H8A110.2C20—C19—C18121.1 (2)
C7—C8—H8A110.2C20—C19—Cl2119.58 (19)
O1—C8—H8B110.2C18—C19—Cl2119.27 (19)
C7—C8—H8B110.2C19—C20—C21119.3 (2)
H8A—C8—H8B108.5C19—C20—H20120.4
O1—C9—C10123.5 (2)C21—C20—H20120.4
O1—C9—C14116.45 (18)C20—C21—C16120.6 (2)
C10—C9—C14120.0 (2)C20—C21—H21119.7
C11—C10—C9120.2 (2)C16—C21—H21119.7
C11—C10—H10119.9
C7—S1—C1—C2177.6 (2)C10—C11—C12—Cl1179.97 (18)
C7—S1—C1—C60.48 (17)C11—C12—C13—C141.6 (3)
C6—C1—C2—C30.9 (4)Cl1—C12—C13—C14178.83 (17)
S1—C1—C2—C3178.70 (18)C12—C13—C14—C91.7 (3)
C1—C2—C3—C40.3 (3)C12—C13—C14—C15175.9 (2)
C2—C3—C4—C50.85 (17)O1—C9—C14—C13177.90 (19)
C3—C4—C5—C60.2 (3)C10—C9—C14—C130.7 (3)
C7—N1—C6—C5179.2 (2)O1—C9—C14—C154.1 (3)
C7—N1—C6—C10.3 (3)C10—C9—C14—C15174.5 (2)
C4—C5—C6—N1178.5 (2)C13—C14—C15—O240.4 (3)
C4—C5—C6—C10.9 (3)C9—C14—C15—O2133.5 (2)
C2—C1—C6—N1178.0 (2)C13—C14—C15—C16138.4 (2)
S1—C1—C6—N10.2 (2)C9—C14—C15—C1647.7 (3)
C2—C1—C6—C51.5 (3)O2—C15—C16—C17148.8 (2)
S1—C1—C6—C5179.73 (18)C14—C15—C16—C1730.0 (3)
C6—N1—C7—C8178.5 (2)O2—C15—C16—C2129.2 (3)
C6—N1—C7—S10.7 (2)C14—C15—C16—C21152.1 (2)
C1—S1—C7—N10.70 (18)C21—C16—C17—C180.2 (3)
C1—S1—C7—C8178.48 (19)C15—C16—C17—C18177.7 (2)
C9—O1—C8—C7176.11 (18)C16—C17—C18—C192.3 (3)
N1—C7—C8—O1176.87 (19)C17—C18—C19—C202.1 (3)
S1—C7—C8—O12.3 (3)C17—C18—C19—Cl2176.40 (17)
C8—O1—C9—C106.9 (3)C18—C19—C20—C210.2 (4)
C8—O1—C9—C14171.7 (2)Cl2—C19—C20—C21178.73 (18)
O1—C9—C10—C11179.0 (2)C19—C20—C21—C162.3 (3)
C14—C9—C10—C110.4 (3)C17—C16—C21—C202.1 (3)
C9—C10—C11—C120.6 (4)C15—C16—C21—C20179.9 (2)
C10—C11—C12—C130.4 (4)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the S1/C1/C6/N1/C7 thiazole ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.563.429 (3)157
C17—H17···N1ii0.932.623.442 (3)148
C18—H18···Cgiii0.932.833.682 (2)152
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1, y+1, z+1; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC21H13Cl2NO2S
Mr414.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)292
a, b, c (Å)13.6452 (4), 7.47005 (19), 18.7286 (6)
β (°) 105.772 (3)
V3)1837.14 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.23 × 0.21 × 0.14
Data collection
DiffractometerOxford Diffraction Xcalibur (Eos, Nova)
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.897, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
18937, 3602, 2544
Rint0.047
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.109, 1.08
No. of reflections3602
No. of parameters241
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.29

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the S1/C1/C6/N1/C7 thiazole ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.93002.56003.429 (3)157.00
C17—H17···N1ii0.93002.62003.442 (3)148.00
C18—H18···Cgiii0.932.833.682 (2)152.1
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1, y+1, z+1; (iii) x, y1, z.
 

Acknowledgements

We are thankful to SSCU, IISc, India for the Oxford Diffraction facility funded under DST–FIST (Level II) and are grateful to the Durban University of Technology for facilities. KNV thanks the NRF South Africa for a DST/NRF Innovation Postdoctoral Fellowship.

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKelarev, V. I., Kobrakov, K. I. & Rybina, I. I. (2003). Chem. Heterocycl. Compd, 39, 1267–1306.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNayak, S. K., Venugopala, K. N., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2013). Acta Cryst. E69, o70.  CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRana, A., Siddiqui, N. & Khan, S. A. (2007). Indian J. Pharm. Sci. 69, 10–17.  CAS Google Scholar
First citationSaeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323–1331.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTelvekar, V. N., Bairwa, V. K., Satardekar, K. & Bellubi, A. (2012). Bioorg. Med. Chem. Lett. 22, 649–652.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVenugopala, K. N., Nayak, S. K., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2012). Acta Cryst. E68, o3125.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds