organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Theobrominium perchlorate dibenzo-18-crown-6 3.25-hydrate

aInstitut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, D-50939 Köln, Germany
*Correspondence e-mail: gerd.meyer@uni-koeln.de

(Received 13 May 2013; accepted 25 May 2013; online 8 June 2013)

The co-crystal, C7H9N4O2+·ClO4·C20H24O6·3.25H2O, consists of theobrominium (3,7-di­methyl-2,6-dioxo-1H-purin-9-ium) cations, perchlorate anions and dibenzo-18-crown-6 and water mol­ecules. The crown ether is in a bent conformation, in which the planes of the aromatic rings subtend an angle of 63.7 (1)°. Inter­molecular O—H⋯O hydrogen bonding between the water mol­ecules and the O atoms of the cyclic ether delimit an empty space reminiscent of a hollow cage. The water mol­ecules are additionally linked to the cations by N—H⋯O hydrogen bonding. One of the positions of the water molecules is occupied only fractionally (25%) and is located outside this framework.

Related literature

For applications of crown ethers, see: Lehn (1995[Lehn, J.-M. (1995). In Supramolecular Chemistry: Concepts and Perspectives. Weinheim: VCH Verlagsgesellschaft mbH.]). For host–guest chemistry of dibenzo-18-crown-6 with nitrogen bases, see: Lämsä et al. (1998[Lämsä, M., Huuskonen, J., Rissanen, K. & Pursiainen, J. (1998). Chem. Eur. J. 4, 84-92.]). For the crystal structure of dibenzo-18-crown-6, see: Lima et al. (2008[Lima, G. M. de, Wardell, J. L. & Harrison, W. T. A. (2008). Acta Cryst. E64, o2001.]).

[Scheme 1]

Experimental

Crystal data
  • C7H9N4O2+·ClO4·C20H24O6·3.23H2O

  • Mr = 699.58

  • Orthorhombic, P 21 21 21

  • a = 11.9292 (3) Å

  • b = 15.2505 (5) Å

  • c = 18.1222 (5) Å

  • V = 3296.90 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 K

  • 0.5 × 0.5 × 0.3 mm

Data collection
  • Stoe & Cie IPDS II diffractometer

  • Absorption correction: numerical [X-RED (Stoe & Cie, 2001[Stoe & Cie (2001). X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]) and X-SHAPE (Stoe & Cie, 1999[Stoe & Cie (1999). X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.])] Tmin = 0.991, Tmax = 0.997

  • 51074 measured reflections

  • 7018 independent reflections

  • 5299 reflections with I > 4σ(I)

  • Rint = 0.084

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.156

  • S = 1.04

  • 7017 reflections

  • 434 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.33 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3092 Friedel pairs

  • Flack parameter: 0.02 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯O3W 0.86 1.74 2.594 (4) 172
O1W—H1O1⋯O12 0.82 2.17 2.941 (3) 158
O2W—H1O2⋯O16 0.82 2.41 3.156 (3) 152
O2W—H1O2⋯O11 0.82 2.48 3.182 (3) 145
O2W—H2O2⋯O14 0.82 2.31 3.124 (3) 175
O3W—H1O3⋯O1W 0.82 1.99 2.802 (3) 172
O3W—H2O3⋯O15 0.82 1.98 2.769 (3) 161
N1—H1⋯O1Wi 0.86 2.01 2.871 (3) 174
O1W—H2O1⋯O2Wii 0.82 1.93 2.747 (3) 175
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Crystal Impact, 2012[Crystal Impact (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzene substituted crown ethers have been instrumental for the development of supramolecular chemistry (Lehn, 1995). Among other areas, biological implications attracted scientific interest, due to the vital importance of host–guest interactions for biological processes (Lämsä et al., 1998 and references therein). Theobromine is one of the biomolecules that are likely to interact with bioreceptors which show some similarities with crown ethers.

In the crystal structure of the title compound the dibenzo-18-crown-6 molecule is in the usual bent conformation (Fig. 1) The angle between the planes of the aromatic rings is 63.7 (1)°, which is slightly lower than the one reported for the crystal structure of the neat molecule (Lima et al., 2008). The oxygen atoms of the ether build hydrogen bonds with two water molecules above (O1W and O3W) and one below (O2W) the central part of the ring (Fig. 2). The resulting geometric arrangement is reminiscent of a hollow cage with O-atoms on the vertices and H-bonds defining the sides. The "cages" are interlinked with one another via H-bonds between water molecules. The theobrominium ions are connected to the H-bonding framework via intermolecular N—H···O hydrogen bonding between N9 and O3W (Table 1).

The pyrimidine ring of the theobromine molecule appears to be superimposed over one of the aromatic rings of dibenzo-18-crown-6. The angle enclosed by the planes of the purine and benzene ring is 9.18 (8)°. Due to this relatively large value of the interplanar angle, π-π stacking interactions between both aromatic moieties appear to be unlikely.

Related literature top

For applications of crown ethers, see: Lehn (1995). For host–guest chemistry of dibenzo-18-crown-6 with N-bases, see: Lämsä et al. (1998). For the crystal structure of dibenzo-18-crown-6, see: Lima et al. (2008).

Experimental top

Theobromine (18 mg, 0.1 mmol) was dissolved in aqueous HClO4 solution (5.6 ml, 6.4%) and added to the suspension of AgClO4 (20 mg, 0.1 mmol) and dibenzo-18-crown-6 (36 mg, 0.1 mmol) in a mixture of toluene (6.3 ml) and dichloromethane (0.3 ml). The biphasic suspension was stirred vigorously for 1.5 hrs. and filtered. After 6 weeks of slow solvent evaporation at room temperature and several cycles of filtration the mother liquor was cooled for 10 days at 4°C. One colourless pentagonal prismatic crystal could be isolated among thin colourless intergrown needles.

Refinement top

All C—H and N—H H atoms were positioned with idealized geometry and were refined isotropic with Uiso(H) = 1.2 Ueq(C, N) (1.5 for methyl H atoms) using a riding model with C - H = 0.970 Å for methylene, 0.930 Å for aromatic, 0.97 Å for methyl and 0.86 Å for N—H H atoms. The O—H H atoms of the water molecules at O1W, O2W and O3W were located in difference map, their bond lengths were set to 0.82 Å and afterwards they were refined isotropic with Uiso(H) = 1.5 Ueq(O) using a riding model. The position of the water molecule O4W is occupied to only 25% and its H atoms were not located.

Structure description top

Benzene substituted crown ethers have been instrumental for the development of supramolecular chemistry (Lehn, 1995). Among other areas, biological implications attracted scientific interest, due to the vital importance of host–guest interactions for biological processes (Lämsä et al., 1998 and references therein). Theobromine is one of the biomolecules that are likely to interact with bioreceptors which show some similarities with crown ethers.

In the crystal structure of the title compound the dibenzo-18-crown-6 molecule is in the usual bent conformation (Fig. 1) The angle between the planes of the aromatic rings is 63.7 (1)°, which is slightly lower than the one reported for the crystal structure of the neat molecule (Lima et al., 2008). The oxygen atoms of the ether build hydrogen bonds with two water molecules above (O1W and O3W) and one below (O2W) the central part of the ring (Fig. 2). The resulting geometric arrangement is reminiscent of a hollow cage with O-atoms on the vertices and H-bonds defining the sides. The "cages" are interlinked with one another via H-bonds between water molecules. The theobrominium ions are connected to the H-bonding framework via intermolecular N—H···O hydrogen bonding between N9 and O3W (Table 1).

The pyrimidine ring of the theobromine molecule appears to be superimposed over one of the aromatic rings of dibenzo-18-crown-6. The angle enclosed by the planes of the purine and benzene ring is 9.18 (8)°. Due to this relatively large value of the interplanar angle, π-π stacking interactions between both aromatic moieties appear to be unlikely.

For applications of crown ethers, see: Lehn (1995). For host–guest chemistry of dibenzo-18-crown-6 with N-bases, see: Lämsä et al. (1998). For the crystal structure of dibenzo-18-crown-6, see: Lima et al. (2008).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radii and intermolecular hydrogen bonding is shown as dashed lines.
[Figure 2] Fig. 2. View of the dibenzo-18-crown-6 molecule and the co-crystallizing water molecules with intermolecular O—H···O hydrogen bonding shwon as dashed lines.
3,7-Dimethyl-2,6-dioxo-1H-purin-9-ium perchlorate dibenzo-18-crown-6 3.25-hydrate top
Crystal data top
C7H9N4O2+·ClO4·C20H24O6·3.23H2OF(000) = 1472
Mr = 699.58Dx = 1.412 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 51177 reflections
a = 11.9292 (3) Åθ = 0.8–27.4°
b = 15.2505 (5) ŵ = 0.19 mm1
c = 18.1222 (5) ÅT = 293 K
V = 3296.90 (16) Å3Pentagonal prism, colourless
Z = 40.5 × 0.5 × 0.3 mm
Data collection top
Stoe & Cie IPDS II
diffractometer
7018 independent reflections
Radiation source: fine-focus sealed tube5299 reflections with I > 4σ(I)
Graphite monochromatorRint = 0.084
ω and φ scansθmax = 26.8°, θmin = 2.4°
Absorption correction: numerical
[X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)]
h = 1415
Tmin = 0.991, Tmax = 0.997k = 1919
51074 measured reflectionsl = 2222
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0909P)2 + 0.3494P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.156(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.32 e Å3
7017 reflectionsΔρmin = 0.33 e Å3
434 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0142 (14)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 3092 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.02 (10)
Crystal data top
C7H9N4O2+·ClO4·C20H24O6·3.23H2OV = 3296.90 (16) Å3
Mr = 699.58Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.9292 (3) ŵ = 0.19 mm1
b = 15.2505 (5) ÅT = 293 K
c = 18.1222 (5) Å0.5 × 0.5 × 0.3 mm
Data collection top
Stoe & Cie IPDS II
diffractometer
7018 independent reflections
Absorption correction: numerical
[X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)]
5299 reflections with I > 4σ(I)
Tmin = 0.991, Tmax = 0.997Rint = 0.084
51074 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.156Δρmax = 0.32 e Å3
S = 1.04Δρmin = 0.33 e Å3
7017 reflectionsAbsolute structure: Flack (1983), 3092 Friedel pairs
434 parametersAbsolute structure parameter: 0.02 (10)
0 restraints
Special details top

Experimental. Absorption correction: The absorption correction (X-RED; Stoe & Cie, 2001) was performed after optimizing the crystal shape using X-SHAPE (Stoe & Cie, 1999).

A suitable single-crystal was carefully selected under a polarizing microscope and mounted in a glass capillary. The scattering intensities were collected on an imaging plate diffractometer (IPDS II, Stoe & Cie) equipped with a fine focus sealed tube X-ray source (Mo Kα, λ = 0.71073 Å) operating at 50 kV and 40 mA. Intensity data for [C7H9N4O2]+ [ClO4]-. C20H24O6 . (H2O)3.25 were collected at 170 K by ω-scans in 360 frames (0 < ω < 180°; φ = O°, 0 < ω < 180°; φ = 90°, exposure time of 5 min) in the 2 Θ range 4.88 to 54.41°.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O20.4670 (2)1.15212 (15)0.28756 (13)0.0795 (6)
O60.4096 (2)0.96464 (16)0.47863 (13)0.0807 (6)
N10.44307 (18)1.05635 (15)0.38208 (14)0.0625 (5)
H10.41101.09770.40650.075*
N30.5349 (2)1.01361 (16)0.27257 (14)0.0660 (6)
N70.5362 (2)0.82655 (16)0.38593 (16)0.0726 (6)
N90.5930 (2)0.85970 (17)0.27451 (16)0.0743 (7)
H90.62210.85470.23130.089*
C20.4802 (2)1.07851 (18)0.31248 (17)0.0635 (6)
C30.5843 (4)1.0351 (3)0.20151 (19)0.0875 (9)
H3A0.55021.08750.18250.131*
H3B0.57200.98770.16770.131*
H3C0.66341.04450.20740.131*
C40.5461 (2)0.93354 (18)0.30451 (17)0.0627 (6)
C50.5097 (2)0.91390 (18)0.37377 (16)0.0625 (6)
C60.4505 (2)0.97669 (19)0.41781 (17)0.0633 (6)
C70.5171 (4)0.7767 (2)0.4533 (2)0.0985 (12)
H7A0.44830.79550.47580.148*
H7B0.57810.78620.48690.148*
H7C0.51220.71540.44160.148*
C80.5846 (3)0.7971 (2)0.3256 (2)0.0798 (9)
H80.60980.73990.31940.096*
O110.88091 (18)0.59317 (13)0.11303 (14)0.0735 (5)
O120.85891 (16)0.62645 (15)0.03842 (12)0.0727 (5)
O130.83609 (19)0.80905 (15)0.06969 (11)0.0743 (5)
O140.85961 (18)0.92968 (13)0.02745 (12)0.0702 (5)
O150.90850 (16)0.89503 (13)0.17826 (12)0.0663 (5)
O160.9051 (2)0.71309 (14)0.21114 (11)0.0718 (5)
C110.8407 (2)0.5724 (2)0.1810 (2)0.0746 (8)
C120.8526 (3)0.6374 (2)0.2340 (2)0.0768 (9)
C130.8139 (3)0.6234 (3)0.3055 (2)0.1026 (14)
H130.82100.66590.34210.123*
C140.7622 (4)0.5399 (4)0.3200 (3)0.121 (2)
H140.73490.52830.36710.146*
C150.7523 (4)0.4778 (4)0.2674 (4)0.127 (2)
H150.71940.42410.27820.153*
C160.7903 (3)0.4945 (2)0.1998 (3)0.0981 (13)
H160.78240.45150.16370.118*
C170.8778 (3)0.5258 (2)0.0583 (2)0.0854 (10)
H17A0.80080.50910.04820.102*
H17B0.91810.47450.07550.102*
C180.9306 (3)0.5608 (2)0.0088 (2)0.0851 (10)
H18A1.00320.58590.00300.102*
H18B0.94140.51430.04450.102*
C190.9059 (3)0.6708 (3)0.10055 (17)0.0792 (9)
H19A0.91710.62960.14060.095*
H19B0.97810.69540.08740.095*
C200.8298 (3)0.7414 (3)0.12458 (16)0.0803 (9)
H20A0.85280.76390.17230.096*
H20B0.75370.71960.12860.096*
C210.7786 (2)0.8836 (2)0.08359 (18)0.0740 (8)
C220.7899 (2)0.9493 (2)0.03031 (19)0.0736 (8)
C230.7343 (3)1.0296 (3)0.0379 (2)0.0947 (12)
H230.74041.07350.00260.114*
C240.6683 (4)1.0404 (4)0.1022 (4)0.125 (2)
H240.63031.09300.10910.150*
C250.6586 (4)0.9765 (5)0.1541 (3)0.130 (2)
H250.61510.98590.19590.155*
C260.7125 (3)0.8991 (3)0.1449 (2)0.0967 (12)
H260.70490.85550.18040.116*
C270.8772 (3)0.99687 (19)0.0821 (2)0.0762 (8)
H27A0.80721.01070.10670.091*
H27B0.90551.04980.05900.091*
C280.9597 (3)0.9629 (2)0.13603 (19)0.0747 (8)
H28A1.02470.94000.11030.090*
H28B0.98411.00980.16840.090*
C290.9845 (3)0.8518 (2)0.22719 (18)0.0738 (8)
H29A1.01250.89300.26350.089*
H29B1.04790.82900.19960.089*
C300.9255 (3)0.7794 (2)0.26431 (17)0.0782 (8)
H30A0.97100.75640.30420.094*
H30B0.85520.80020.28480.094*
Cl10.22252 (9)0.73830 (6)0.35970 (7)0.1009 (3)
O210.1452 (4)0.7997 (2)0.3897 (2)0.1286 (11)
O220.1621 (4)0.6775 (2)0.3156 (3)0.1529 (16)
O230.3015 (3)0.7825 (3)0.3166 (3)0.1486 (14)
O240.2795 (4)0.6895 (3)0.4140 (3)0.171 (2)
O1W0.67017 (17)0.69899 (13)0.04627 (11)0.0677 (5)
H1O10.73310.68670.03120.102*
H2O10.62460.71150.01410.102*
O2W1.00739 (19)0.76413 (15)0.05640 (12)0.0791 (6)
H1O20.97600.73460.08810.119*
H2O20.96600.80650.05070.119*
O3W0.69410 (18)0.83435 (16)0.14960 (13)0.0825 (6)
H1O30.68110.79410.12080.128*
H2O30.76130.84570.14960.124*
O4W0.7438 (9)0.6622 (7)0.4630 (4)0.093 (3)0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0822 (14)0.0664 (12)0.0901 (15)0.0001 (10)0.0082 (11)0.0057 (11)
O60.0735 (12)0.0897 (15)0.0787 (14)0.0036 (11)0.0036 (11)0.0004 (11)
N10.0560 (11)0.0606 (12)0.0708 (13)0.0022 (10)0.0049 (10)0.0053 (10)
N30.0592 (12)0.0669 (14)0.0718 (14)0.0034 (10)0.0010 (10)0.0057 (11)
N70.0647 (13)0.0625 (13)0.0906 (17)0.0016 (11)0.0157 (13)0.0026 (13)
N90.0607 (13)0.0712 (15)0.0910 (17)0.0033 (12)0.0082 (12)0.0223 (14)
C20.0523 (13)0.0614 (15)0.0767 (17)0.0024 (11)0.0096 (12)0.0057 (13)
C30.104 (2)0.085 (2)0.0738 (19)0.007 (2)0.0098 (18)0.0055 (16)
C40.0486 (12)0.0618 (15)0.0777 (17)0.0023 (11)0.0086 (12)0.0121 (13)
C50.0542 (13)0.0585 (14)0.0749 (17)0.0012 (11)0.0100 (12)0.0035 (12)
C60.0496 (12)0.0694 (16)0.0710 (17)0.0045 (11)0.0085 (12)0.0038 (13)
C70.109 (3)0.075 (2)0.111 (3)0.007 (2)0.023 (2)0.021 (2)
C80.0647 (16)0.0633 (17)0.111 (3)0.0032 (14)0.0195 (18)0.0124 (18)
O110.0724 (12)0.0569 (10)0.0911 (14)0.0054 (9)0.0053 (11)0.0116 (10)
O120.0560 (10)0.0762 (12)0.0859 (13)0.0014 (9)0.0037 (10)0.0127 (10)
O130.0752 (12)0.0826 (13)0.0653 (11)0.0069 (11)0.0087 (10)0.0054 (10)
O140.0688 (11)0.0595 (10)0.0823 (12)0.0028 (9)0.0039 (10)0.0050 (9)
O150.0538 (9)0.0670 (11)0.0782 (11)0.0086 (8)0.0064 (9)0.0077 (9)
O160.0812 (12)0.0683 (11)0.0659 (11)0.0003 (10)0.0046 (10)0.0055 (9)
C110.0516 (13)0.0677 (17)0.105 (2)0.0049 (12)0.0009 (15)0.0291 (17)
C120.0557 (14)0.082 (2)0.093 (2)0.0131 (14)0.0066 (14)0.0339 (18)
C130.077 (2)0.125 (3)0.106 (3)0.032 (2)0.022 (2)0.057 (3)
C140.071 (2)0.148 (4)0.145 (4)0.033 (3)0.037 (3)0.093 (4)
C150.071 (2)0.110 (3)0.202 (6)0.017 (2)0.024 (3)0.076 (4)
C160.0577 (16)0.079 (2)0.158 (4)0.0009 (15)0.003 (2)0.056 (2)
C170.0680 (18)0.0517 (15)0.136 (3)0.0050 (13)0.020 (2)0.0096 (17)
C180.0648 (17)0.0672 (18)0.123 (3)0.0087 (15)0.0039 (18)0.0287 (19)
C190.0619 (15)0.106 (2)0.0696 (17)0.0173 (16)0.0104 (14)0.0302 (17)
C200.0731 (18)0.112 (2)0.0557 (14)0.0240 (18)0.0015 (13)0.0057 (16)
C210.0556 (14)0.093 (2)0.0732 (17)0.0043 (14)0.0020 (13)0.0311 (17)
C220.0534 (14)0.0809 (19)0.0866 (19)0.0008 (13)0.0076 (14)0.0316 (17)
C230.0722 (19)0.096 (2)0.117 (3)0.0136 (18)0.016 (2)0.045 (2)
C240.081 (2)0.144 (4)0.150 (4)0.029 (3)0.016 (3)0.085 (4)
C250.089 (3)0.185 (6)0.115 (3)0.019 (4)0.006 (3)0.080 (4)
C260.0722 (19)0.140 (3)0.078 (2)0.006 (2)0.0080 (17)0.042 (2)
C270.0732 (18)0.0524 (14)0.103 (2)0.0064 (13)0.0146 (17)0.0025 (15)
C280.0644 (15)0.0657 (16)0.094 (2)0.0155 (13)0.0059 (15)0.0140 (15)
C290.0573 (15)0.088 (2)0.0756 (18)0.0004 (14)0.0136 (14)0.0204 (15)
C300.0702 (18)0.101 (2)0.0633 (16)0.0113 (17)0.0067 (14)0.0063 (16)
Cl10.0875 (6)0.0753 (5)0.1399 (9)0.0048 (4)0.0248 (6)0.0116 (5)
O210.155 (3)0.099 (2)0.132 (2)0.010 (2)0.018 (2)0.0204 (19)
O220.135 (3)0.110 (2)0.213 (4)0.006 (2)0.068 (3)0.051 (3)
O230.116 (3)0.150 (3)0.180 (4)0.009 (2)0.014 (3)0.001 (3)
O240.164 (4)0.122 (3)0.227 (5)0.013 (3)0.103 (4)0.031 (3)
O1W0.0572 (10)0.0723 (11)0.0737 (11)0.0037 (9)0.0079 (9)0.0034 (9)
O2W0.0788 (13)0.0803 (13)0.0782 (13)0.0053 (11)0.0104 (11)0.0007 (10)
O3W0.0557 (10)0.0893 (15)0.1025 (15)0.0050 (10)0.0010 (10)0.0266 (13)
O4W0.114 (7)0.121 (7)0.045 (4)0.059 (6)0.014 (4)0.015 (4)
Geometric parameters (Å, º) top
O2—C21.220 (4)C15—H150.9300
O6—C61.219 (4)C16—H160.9300
N1—C21.379 (4)C17—C181.471 (5)
N1—C61.379 (4)C17—H17A0.9700
N1—H10.8600C17—H17B0.9700
N3—C41.358 (4)C18—H18A0.9700
N3—C21.388 (4)C18—H18B0.9700
N3—C31.454 (4)C19—C201.474 (5)
N7—C81.315 (5)C19—H19A0.9700
N7—C51.387 (4)C19—H19B0.9700
N7—C71.456 (5)C20—H20A0.9700
N9—C81.334 (5)C20—H20B0.9700
N9—C41.370 (4)C21—C261.382 (4)
N9—H90.8600C21—C221.398 (5)
C3—H3A0.9600C22—C231.399 (5)
C3—H3B0.9600C23—C241.415 (7)
C3—H3C0.9600C23—H230.9300
C4—C51.361 (4)C24—C251.360 (8)
C5—C61.433 (4)C24—H240.9300
C7—H7A0.9600C25—C261.355 (8)
C7—H7B0.9600C25—H250.9300
C7—H7C0.9600C26—H260.9300
C8—H80.9300C27—C281.481 (5)
O11—C111.359 (4)C27—H27A0.9700
O11—C171.428 (4)C27—H27B0.9700
O12—C181.422 (4)C28—H28A0.9700
O12—C191.428 (4)C28—H28B0.9700
O13—C211.351 (4)C29—C301.471 (5)
O13—C201.435 (4)C29—H29A0.9700
O14—C221.370 (4)C29—H29B0.9700
O14—C271.440 (4)C30—H30A0.9700
O15—C281.424 (4)C30—H30B0.9700
O15—C291.430 (4)Cl1—O231.397 (4)
O16—C121.377 (4)Cl1—O241.408 (4)
O16—C301.418 (4)Cl1—O221.421 (3)
C11—C161.375 (4)Cl1—O211.422 (4)
C11—C121.388 (5)O1W—H1O10.8201
C12—C131.392 (5)O1W—H2O10.8201
C13—C141.439 (7)O2W—H1O20.8201
C13—H130.9300O2W—H2O20.8199
C14—C151.348 (8)O3W—H1O30.8200
C14—H140.9300O3W—H2O30.8200
C15—C161.330 (8)
C2—N1—C6128.7 (2)O12—C18—C17108.1 (3)
C2—N1—H1115.7O12—C18—H18A110.1
C6—N1—H1115.7C17—C18—H18A110.1
C4—N3—C2117.7 (3)O12—C18—H18B110.1
C4—N3—C3122.7 (3)C17—C18—H18B110.1
C2—N3—C3119.4 (3)H18A—C18—H18B108.4
C8—N7—C5107.2 (3)O12—C19—C20109.7 (2)
C8—N7—C7125.9 (3)O12—C19—H19A109.7
C5—N7—C7126.8 (3)C20—C19—H19A109.7
C8—N9—C4106.4 (3)O12—C19—H19B109.7
C8—N9—H9126.8C20—C19—H19B109.7
C4—N9—H9126.8H19A—C19—H19B108.2
O2—C2—N1121.5 (3)O13—C20—C19106.7 (2)
O2—C2—N3121.6 (3)O13—C20—H20A110.4
N1—C2—N3116.9 (2)C19—C20—H20A110.4
N3—C3—H3A109.5O13—C20—H20B110.4
N3—C3—H3B109.5C19—C20—H20B110.4
H3A—C3—H3B109.5H20A—C20—H20B108.6
N3—C3—H3C109.5O13—C21—C26125.7 (4)
H3A—C3—H3C109.5O13—C21—C22115.2 (3)
H3B—C3—H3C109.5C26—C21—C22119.2 (3)
N3—C4—C5124.0 (3)O14—C22—C21115.4 (3)
N3—C4—N9127.6 (3)O14—C22—C23123.7 (4)
C5—C4—N9108.4 (3)C21—C22—C23120.9 (3)
C4—C5—N7106.6 (3)C22—C23—C24116.6 (5)
C4—C5—C6121.6 (3)C22—C23—H23121.7
N7—C5—C6131.8 (3)C24—C23—H23121.7
O6—C6—N1122.1 (3)C25—C24—C23122.2 (5)
O6—C6—C5126.9 (3)C25—C24—H24118.9
N1—C6—C5111.0 (3)C23—C24—H24118.9
N7—C7—H7A109.5C26—C25—C24120.0 (5)
N7—C7—H7B109.5C26—C25—H25120.0
H7A—C7—H7B109.5C24—C25—H25120.0
N7—C7—H7C109.5C25—C26—C21121.2 (5)
H7A—C7—H7C109.5C25—C26—H26119.4
H7B—C7—H7C109.5C21—C26—H26119.4
N7—C8—N9111.4 (3)O14—C27—C28107.5 (2)
N7—C8—H8124.3O14—C27—H27A110.2
N9—C8—H8124.3C28—C27—H27A110.2
C11—O11—C17116.9 (3)O14—C27—H27B110.2
C18—O12—C19113.3 (3)C28—C27—H27B110.2
C21—O13—C20116.7 (3)H27A—C27—H27B108.5
C22—O14—C27117.3 (2)O15—C28—C27108.9 (2)
C28—O15—C29113.4 (2)O15—C28—H28A109.9
C12—O16—C30118.1 (3)C27—C28—H28A109.9
O11—C11—C16125.5 (4)O15—C28—H28B109.9
O11—C11—C12115.1 (3)C27—C28—H28B109.9
C16—C11—C12119.4 (4)H28A—C28—H28B108.3
O16—C12—C11115.9 (3)O15—C29—C30109.0 (2)
O16—C12—C13124.0 (4)O15—C29—H29A109.9
C11—C12—C13120.1 (4)C30—C29—H29A109.9
C12—C13—C14116.6 (5)O15—C29—H29B109.9
C12—C13—H13121.7C30—C29—H29B109.9
C14—C13—H13121.7H29A—C29—H29B108.3
C15—C14—C13122.0 (4)O16—C30—C29107.8 (2)
C15—C14—H14119.0O16—C30—H30A110.1
C13—C14—H14119.0C29—C30—H30A110.1
C16—C15—C14119.2 (5)O16—C30—H30B110.1
C16—C15—H15120.4C29—C30—H30B110.1
C14—C15—H15120.4H30A—C30—H30B108.5
C15—C16—C11122.8 (5)O23—Cl1—O24108.7 (3)
C15—C16—H16118.6O23—Cl1—O22110.0 (3)
C11—C16—H16118.6O24—Cl1—O22107.1 (3)
O11—C17—C18107.6 (3)O23—Cl1—O21109.5 (3)
O11—C17—H17A110.2O24—Cl1—O21113.2 (3)
C18—C17—H17A110.2O22—Cl1—O21108.4 (2)
O11—C17—H17B110.2H1O1—O1W—H2O1115.1
C18—C17—H17B110.2H1O2—O2W—H2O2104.2
H17A—C17—H17B108.5H1O3—O3W—H2O3110.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O3W0.861.742.594 (4)172
O1W—H1O1···O120.822.172.941 (3)158
O2W—H1O2···O160.822.413.156 (3)152
O2W—H1O2···O110.822.483.182 (3)145
O2W—H2O2···O140.822.313.124 (3)175
O3W—H1O3···O1W0.821.992.802 (3)172
O3W—H2O3···O150.821.982.769 (3)161
N1—H1···O1Wi0.862.012.871 (3)174
O1W—H2O1···O2Wii0.821.932.747 (3)175
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC7H9N4O2+·ClO4·C20H24O6·3.23H2O
Mr699.58
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)11.9292 (3), 15.2505 (5), 18.1222 (5)
V3)3296.90 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.5 × 0.5 × 0.3
Data collection
DiffractometerStoe & Cie IPDS II
Absorption correctionNumerical
[X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)]
Tmin, Tmax0.991, 0.997
No. of measured, independent and
observed [I > 4σ(I)] reflections
51074, 7018, 5299
Rint0.084
(sin θ/λ)max1)0.635
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.156, 1.04
No. of reflections7017
No. of parameters434
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.33
Absolute structureFlack (1983), 3092 Friedel pairs
Absolute structure parameter0.02 (10)

Computer programs: X-AREA (Stoe & Cie, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), DIAMOND (Crystal Impact, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O3W0.861.742.594 (4)171.9
O1W—H1O1···O120.822.172.941 (3)157.7
O2W—H1O2···O160.822.413.156 (3)152.1
O2W—H1O2···O110.822.483.182 (3)144.5
O2W—H2O2···O140.822.313.124 (3)175.3
O3W—H1O3···O1W0.821.992.802 (3)172.4
O3W—H2O3···O150.821.982.769 (3)161.3
N1—H1···O1Wi0.862.012.871 (3)174.2
O1W—H2O1···O2Wii0.821.932.747 (3)174.9
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1/2, y+3/2, z.
 

Acknowledgements

VK is grateful to the Studienstiftung des Deutschen Volkes for a PhD scholarship.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCrystal Impact (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLämsä, M., Huuskonen, J., Rissanen, K. & Pursiainen, J. (1998). Chem. Eur. J. 4, 84–92.  Google Scholar
First citationLehn, J.-M. (1995). In Supramolecular Chemistry: Concepts and Perspectives. Weinheim: VCH Verlagsgesellschaft mbH.  Google Scholar
First citationLima, G. M. de, Wardell, J. L. & Harrison, W. T. A. (2008). Acta Cryst. E64, o2001.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1999). X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2001). X-RED. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2002). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds