organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-Methyl-2-(3,3,3-trichloro-2-hydroxypropyl)quinazolin-4(3H)-one

Fotima Rabbimovna Utayeva, Rasul Yangiberdievich Okmanov,* Nuridin Isomidinovich Mukarramov, Khusnutdin Muhitovich Shakhidoyatov and Bakhodir Tashkhodiaev

S.Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan Correspondence e-mail: raxul@mail.ru

Received 4 June 2013; accepted 10 June 2013

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.003 Å; R factor = 0.040; wR factor = 0.116; data-to-parameter ratio = 16.0.

The title molecule, C₁₂H₁₁Cl₃N₂O₂, contains planar quinazolin-4(3H)-one (r.m.s. deviation = 0.0257 Å) and propyl fragments, forming a dihedral angle of 10.4 (2)°. An intramolecular O-H···N hydorgen bond occurs. In the crystal, $O-H \cdots O$ hydrogen bonds link the molecules into an infinite chain running parallel to the b axis.

Related literature

For the biological properties of quinazolin-4(3H)-one derivatives, see: Yang et al. (2009). For the fungicidal and insecticidal activity and syntheses of quinazolin-4(3H)-one derivatives, see: Shakhidoyatov (1988). For related structures of quinazolin-4(3H)-one derivatives, see: Tashkhodjaev et al. (2001). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data $C_{12}H_{11}Cl_3N_2O_2$ $M_r = 321.58$

Orthorhombic, Pbca a = 9.3440 (19) Å

b = 11.352 (2) Å c = 25.719 (5) Å V = 2728.2 (10) Å³ Z = 8

Data collection

Oxford Diffraction Xcalibur Ruby diffractometer Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) $T_{\min} = 0.284, T_{\max} = 0.334$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	H atoms treated by a mixture of
$wR(F^2) = 0.116$	independent and constrained
S = 1.03	refinement
2833 reflections	$\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$
177 parameters	$\Delta \rho_{\rm min} = -0.43 \text{ e} \text{ Å}^{-3}$

Cu $K\alpha$ radiation

 $0.23 \times 0.20 \times 0.18 \text{ mm}$

8631 measured reflections

2833 independent reflections

2273 reflections with $I > 2\sigma(I)$

 $\mu = 6.09 \text{ mm}^{-1}$

T = 291 K

 $R_{\rm int} = 0.032$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2\cdots N1$ $O2-H2\cdots O1^{i}$	0.79 (3) 0.79 (3)	2.47 (3) 2.13 (3)	2.924 (2) 2.842 (2)	118 (3) 149 (3)
Semenature and as (i)		1		

Symmetry code: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010).

We thank the Academy of Sciences of the Republic of Uzbekistan for supporting this study (grant FA-F7-T185).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2636).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Shakhidoyatov, Kh. M. (1988). Ouinazolin-4-one and their biological activity., edited by M. S. Yunusov, S. R. Tulyaganov & M. M. Yunusov, p. 99. Tashkent: Fan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tashkhodjaev, B., Turgunov, K. K. & Shakhidoyatov, Kh. M. (2001). J. Struct. Chem. 42, 1040-1043.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yang, X.-H., Chen, X.-B. & Zhou, S.-X. (2009). Acta Cryst. E65, 0185-0186.

supporting information

Acta Cryst. (2013). E69, o1094 [https://doi.org/10.1107/S1600536813016073]

3-Methyl-2-(3,3,3-trichloro-2-hydroxypropyl)quinazolin-4(3H)-one

Fotima Rabbimovna Utayeva, Rasul Yangiberdievich Okmanov, Nuridin Isomidinovich Mukarramov, Khusnutdin Muhitovich Shakhidoyatov and Bakhodir Tashkhodjaev

S1. Comment

Quinazolin-4(3*H*)-one and its derivatives are well known to have broad biological activity, such as antibacterial, antifungal, antimicrobial, anticonvulsant and others (Yang *et al.*, 2009). As well as among quinazolin-4(3*H*)-one derivatives found fungicide, insecticide active compounds for agriculture (Shakhidoyatov, 1988). Reaction of 2,3-dimethylquinazolin-4(3*H*)-one with chloral hydrate in the of reagent–substrate 1:1.2 ratio resulted in the title compound. The structure of the received product was investigated by X-ray diffraction, ¹H NMR, UF and IR methods.

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported in closely related compounds (Tashkhodjaev *et al.*, 2001). The molecule has planar quinazolin-4(3*H*)-one (r.m.s. deviation of 0.0257 Å) and propyl fragment. The angle between planes of quinazolin-4(3*H*)-one ring and *n*-propyl fragment is 10.4 (2)°. The sum of bond angles at atom N3 (close to 360°) and bond length indicate sp^2 hybridization of atom N3. It indicates that the lone electronic pair of nitrogen atom participate in a conjugation with π -electrons of pyrimidine rings.

In the crystal structure of the title compound is observed a cyclic S(6) intramolecular O2—H···N1 hydrogen bond (Bernstein *et al.*, 1995). Another O2—H···O1=C4 hydrogen bond forms an infinite chain along the *b*-axis (Figure 2 & Table 1).

S2. Experimental

In the pear-shaped flask were placed 2,3-dimethylquinazolin-4(3*H*)-one (0.348 g, 2 mmol) and chloral hydrate (2,2,2-trichloroethane-1,1-diol) (0.397 g, 2.4 mmol) and heated in an oil bath at 403 K for 6 h (Figure 3). The resulting solid was recrystallized from cyclohexane, yield 0.378 g (59%). The purity of synthesized compound was checked by thin layer chromatography (TLC) on plate Whatman AL Sil G/UV (Germany), viewing box 254 nm. Eluents: benzene/acetone (4:1). R_f 0.65. Colorless crystals, suitable for *X*-ray (in the form of the prisms and with size 0.23x0.20x0.18 mm) were obtained from ethanol at room temperature, m.p. 423–425 K.

S3. Refinement

The hydrogen atom of the hydroxyl group were located from a difference Fourier synthesis and were allowed to refine. All other H atoms were placed geometrically (with C—H distances of 0.98 Å for CH; 0.97 Å for CH₂; 0.96 Å for CH₃; and 0.93 Å for C_{ar}) and included in the refinement in a riding motion approximation with $U_{iso}=1.2U_{eq}(C)$ $[U_{iso}=1.5U_{eq}(C,O)$ for methyl H atoms].

Figure 1

The molecular structure of the title compound, showing the atom numbering scheme. The displacement ellipsoid are drawn at the 50% probability level. Intramolecular H-bond is shown with dashed lines.

Figure 2

A view of the O—H…O hydrogen bonds (dotted lines) in the crystal structure of the title compound.

Figure 3

Reaction scheme.

3-Methyl-2-(3,3,3-trichloro-2-hydroxypropyl)quinazolin-4(3H)-one

Crystal data

 $C_{12}H_{11}Cl_3N_2O_2$ $M_r = 321.58$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 9.3440 (19) Å b = 11.352 (2) Å c = 25.719 (5) Å V = 2728.2 (10) Å³ Z = 8F(000) = 1312 $D_x = 1.566 \text{ Mg m}^{-3}$ Melting point: 423(2) K Cu $K\alpha$ radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 1044 reflections $\theta = 3.4-35.8^{\circ}$ $\mu = 6.09 \text{ mm}^{-1}$ T = 291 KPrizmatic, colorless $0.23 \times 0.20 \times 0.18 \text{ mm}$ Data collection

Oxford Diffraction Xcalibur Ruby diffractometer Radiation source: Enhance (Cu) X-ray Source Graphite monochromator Detector resolution: 10.2576 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2009) $T_{\min} = 0.284, T_{\max} = 0.334$	8631 measured reflections 2833 independent reflections 2273 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 76.4^{\circ}, \ \theta_{min} = 3.4^{\circ}$ $h = -10 \rightarrow 11$ $k = -13 \rightarrow 14$ $l = -32 \rightarrow 31$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.116$ S = 1.03 2833 reflections 177 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0775P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta \alpha = 0.34 \text{ e } \delta^{-3}$
unect methods	$\Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. ¹**H NMR (400 MHz, DMSO)**: 8.11 (1*H*, d, J=7.9 Hz, H-5), 7.80 (1*H*, t, J=7.9 Hz, H-7), 7.64 (1*H*, d, J=7.9 Hz, H-8), 7.50 (1*H*, t, J=7.9 Hz, H-6), 7.06 (1*H*, b.d, J=4.8 Hz, OH), 4.84 (1*H*, b.d, J=8.6 Hz, CH-10), 3.46 (1*H*, m, H-9 e), 3.22 (1*H*, dd, J=15.6, J=9.2 Hz, H-9a), 3.6 (3*H*, s, CH₃-12).

In the IR spectrum of the title compound were observed absorption bands due to the stretching vibrations of 3401 sm⁻¹ for OH, 2829 sm⁻¹ for CH₃, 1657 sm⁻¹ for C=O, 1594 sm⁻¹ for C=N, 1563 sm⁻¹ for C=C– groups. Additionally, at 695 sm⁻¹ was observed p–p valence vibrations of the C—Cl group.

The UV spectrum of title compound in ethanol is characterized by absorption bands at 225, 266, 305 and 316 nm. **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.5628 (2)	0.70184 (16)	0.27949 (7)	0.0607 (5)	
N1	0.27902 (19)	0.46334 (15)	0.22269 (6)	0.0373 (4)	
C2	0.3539 (2)	0.53163 (17)	0.19344 (7)	0.0331 (4)	
N3	0.44671 (19)	0.61703 (15)	0.21185 (6)	0.0375 (4)	
C4	0.4735 (2)	0.62977 (19)	0.26492 (8)	0.0418 (5)	
C4A	0.3879 (2)	0.5557 (2)	0.29826 (8)	0.0427 (5)	
C5	0.3995 (3)	0.5667 (2)	0.35264 (9)	0.0573 (7)	
H5A	0.4627	0.6208	0.3671	0.069*	
C6	0.3168 (3)	0.4969 (3)	0.38393 (9)	0.0682 (8)	

supporting information

H6A	0.3253	0.5021	0.4199	0.082*
C7	0.2197 (3)	0.4179 (3)	0.36200 (10)	0.0640 (8)
H7A	0.1631	0.3715	0.3836	0.077*
C8	0.2063 (3)	0.4073 (2)	0.30879 (9)	0.0508 (6)
H8A	0.1406	0.3548	0.2946	0.061*
C8A	0.2923 (2)	0.47628 (19)	0.27638 (8)	0.0396 (5)
C9	0.3415 (2)	0.52114 (18)	0.13538 (7)	0.0379 (4)
H9A	0.4362	0.5114	0.1206	0.046*
H9B	0.3010	0.5933	0.1215	0.046*
C10	0.2482 (2)	0.41768 (17)	0.11937 (7)	0.0345 (4)
H10A	0.1545	0.4256	0.1361	0.041*
C11	0.2271 (2)	0.41360 (18)	0.06012 (7)	0.0388 (4)
C12	0.5242 (3)	0.6964 (2)	0.17710 (9)	0.0499 (6)
H12A	0.4707	0.7066	0.1455	0.075*
H12B	0.6163	0.6635	0.1692	0.075*
H12C	0.5365	0.7714	0.1938	0.075*
O2	0.3064 (2)	0.30816 (13)	0.13248 (6)	0.0496 (4)
C11	0.10438 (8)	0.30035 (5)	0.04356 (2)	0.0569 (2)
C12	0.15423 (7)	0.54822 (5)	0.03761 (2)	0.05238 (19)
C13	0.38904 (8)	0.38646 (8)	0.02721 (3)	0.0712 (2)
H2	0.326 (3)	0.299 (3)	0.1623 (13)	0.075 (10)*

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0610 (10)	0.0636 (11)	0.0576 (10)	-0.0084 (10)	-0.0205 (8)	-0.0186 (8)
0.0407 (9)	0.0369 (9)	0.0343 (8)	0.0009 (8)	-0.0039 (7)	-0.0022 (7)
0.0328 (9)	0.0323 (9)	0.0342 (9)	0.0032 (8)	-0.0072 (7)	-0.0039 (7)
0.0378 (8)	0.0373 (9)	0.0372 (8)	-0.0012 (8)	-0.0083 (7)	-0.0037 (7)
0.0425 (11)	0.0428 (11)	0.0401 (10)	0.0062 (10)	-0.0121 (9)	-0.0116 (8)
0.0443 (11)	0.0494 (12)	0.0345 (10)	0.0150 (10)	-0.0070 (8)	-0.0056 (8)
0.0608 (15)	0.0744 (17)	0.0365 (11)	0.0162 (13)	-0.0099 (11)	-0.0098 (11)
0.0766 (18)	0.093 (2)	0.0348 (11)	0.0242 (18)	-0.0023 (12)	0.0001 (13)
0.0720 (18)	0.0722 (17)	0.0479 (13)	0.0240 (15)	0.0159 (13)	0.0142 (12)
0.0552 (14)	0.0496 (13)	0.0477 (12)	0.0098 (11)	0.0052 (10)	0.0040 (10)
0.0423 (11)	0.0411 (10)	0.0355 (9)	0.0117 (9)	-0.0026 (8)	-0.0018 (8)
0.0425 (10)	0.0406 (10)	0.0307 (9)	-0.0041 (9)	-0.0069 (8)	-0.0016 (8)
0.0406 (10)	0.0345 (10)	0.0285 (8)	0.0006 (8)	-0.0059 (8)	0.0008 (7)
0.0468 (11)	0.0369 (10)	0.0326 (9)	0.0005 (9)	-0.0060(8)	-0.0012 (8)
0.0498 (13)	0.0456 (12)	0.0544 (12)	-0.0112 (11)	-0.0069 (10)	0.0012 (10)
0.0734 (11)	0.0352 (7)	0.0403 (8)	0.0076 (8)	-0.0213 (8)	0.0016 (6)
0.0771 (4)	0.0438 (3)	0.0499 (3)	-0.0108 (3)	-0.0273 (3)	-0.0026 (2)
0.0730 (4)	0.0420 (3)	0.0421 (3)	0.0013 (3)	-0.0189 (3)	0.0088 (2)
0.0643 (4)	0.0993 (6)	0.0499 (3)	0.0099 (4)	0.0118 (3)	-0.0174(3)
	$\begin{array}{c} U^{11} \\ \hline 0.0610 \ (10) \\ 0.0407 \ (9) \\ 0.0328 \ (9) \\ 0.0378 \ (8) \\ 0.0425 \ (11) \\ 0.0425 \ (11) \\ 0.0443 \ (11) \\ 0.0608 \ (15) \\ 0.0766 \ (18) \\ 0.0720 \ (18) \\ 0.0552 \ (14) \\ 0.0425 \ (10) \\ 0.0425 \ (10) \\ 0.0406 \ (10) \\ 0.0406 \ (10) \\ 0.0408 \ (11) \\ 0.0498 \ (13) \\ 0.0734 \ (11) \\ 0.0730 \ (4) \\ 0.0643 \ (4) \end{array}$	U^{11} U^{22} 0.0610 (10)0.0636 (11)0.0407 (9)0.0369 (9)0.0328 (9)0.0323 (9)0.0378 (8)0.0373 (9)0.0425 (11)0.0428 (11)0.0443 (11)0.0494 (12)0.0608 (15)0.0744 (17)0.0766 (18)0.093 (2)0.0720 (18)0.0722 (17)0.0552 (14)0.0496 (13)0.0423 (11)0.0411 (10)0.0425 (10)0.0406 (10)0.0406 (10)0.0345 (10)0.0498 (13)0.0456 (12)0.0734 (11)0.0352 (7)0.0730 (4)0.0420 (3)0.0643 (4)0.0993 (6)	U^{11} U^{22} U^{33} 0.0610 (10)0.0636 (11)0.0576 (10)0.0407 (9)0.0369 (9)0.0343 (8)0.0328 (9)0.0323 (9)0.0342 (9)0.0378 (8)0.0373 (9)0.0372 (8)0.0425 (11)0.0428 (11)0.0401 (10)0.0443 (11)0.0494 (12)0.0345 (10)0.0608 (15)0.0744 (17)0.0365 (11)0.0766 (18)0.093 (2)0.0348 (11)0.0720 (18)0.0722 (17)0.0479 (13)0.0552 (14)0.0496 (13)0.0477 (12)0.0423 (11)0.0411 (10)0.0355 (9)0.0406 (10)0.0345 (10)0.0285 (8)0.0468 (11)0.0369 (10)0.0326 (9)0.0498 (13)0.0456 (12)0.0544 (12)0.0734 (11)0.0352 (7)0.0403 (8)0.0771 (4)0.0420 (3)0.0421 (3)0.0643 (4)0.0993 (6)0.0499 (3)	U^{11} U^{22} U^{33} U^{12} 0.0610 (10)0.0636 (11)0.0576 (10) -0.0084 (10)0.0407 (9)0.0369 (9)0.0343 (8)0.0009 (8)0.0328 (9)0.0323 (9)0.0342 (9)0.0032 (8)0.0378 (8)0.0373 (9)0.0372 (8) -0.0012 (8)0.0425 (11)0.0428 (11)0.0401 (10)0.0062 (10)0.0443 (11)0.0494 (12)0.0345 (10)0.0150 (10)0.0608 (15)0.0744 (17)0.0365 (11)0.0162 (13)0.0766 (18)0.093 (2)0.0348 (11)0.0242 (18)0.0720 (18)0.0722 (17)0.0479 (13)0.0240 (15)0.0552 (14)0.0496 (13)0.0477 (12)0.0098 (11)0.0423 (11)0.0406 (10)0.0307 (9) -0.0041 (9)0.0406 (10)0.0345 (10)0.0285 (8)0.0006 (8)0.0468 (11)0.0352 (7)0.0403 (8)0.0076 (8)0.0771 (4)0.0438 (3)0.0499 (3) -0.0108 (3)0.0730 (4)0.0420 (3)0.0421 (3)0.0013 (3)0.0643 (4)0.0993 (6)0.0499 (3) -0.0099 (4)	U^{11} U^{22} U^{33} U^{12} U^{13} 0.0610 (10)0.0636 (11)0.0576 (10) $-0.0084 (10)$ $-0.0205 (8)$ 0.0407 (9)0.0369 (9)0.0343 (8)0.0009 (8) $-0.0039 (7)$ 0.0328 (9)0.0323 (9)0.0342 (9)0.0032 (8) $-0.0072 (7)$ 0.0378 (8)0.0373 (9)0.0372 (8) $-0.0012 (8)$ $-0.0083 (7)$ 0.0425 (11)0.0428 (11)0.0401 (10)0.0062 (10) $-0.0121 (9)$ 0.0443 (11)0.0494 (12)0.0345 (10)0.0150 (10) $-0.0070 (8)$ 0.0608 (15)0.0744 (17)0.0365 (11)0.0162 (13) $-0.0023 (12)$ 0.0766 (18)0.093 (2)0.0348 (11)0.0242 (18) $-0.0023 (12)$ 0.0720 (18)0.0722 (17)0.0477 (12)0.0098 (11)0.0052 (10)0.0423 (11)0.0411 (10)0.0355 (9)0.0117 (9) $-0.0026 (8)$ 0.0425 (10)0.0406 (10)0.0307 (9) $-0.0041 (9)$ $-0.0059 (8)$ 0.0468 (11)0.0369 (10)0.0326 (9)0.0005 (9) $-0.0060 (8)$ 0.0498 (13)0.0456 (12)0.0544 (12) $-0.0112 (11)$ $-0.0069 (10)$ 0.0734 (11)0.0352 (7)0.0403 (8)0.0076 (8) $-0.0213 (3)$ 0.0771 (4)0.0438 (3)0.0499 (3) $-0.0108 (3)$ $-0.0273 (3)$ 0.0730 (4)0.0420 (3)0.0421 (3)0.0013 (3) $-0.0189 (3)$

Geometric parameters (Å, °)

01—C4	1.227 (3)	C8—C8A	1.398 (3)	
N1—C2	1.287 (3)	C8—H8A	0.9300	
N1—C8A	1.394 (2)	C9—C10	1.520 (3)	
C2—N3	1.384 (3)	С9—Н9А	0.9700	
С2—С9	1.503 (2)	C9—H9B	0.9700	
N3—C4	1.395 (2)	C10—O2	1.398 (2)	
N3—C12	1.462 (3)	C10—C11	1.537 (3)	
C4—C4A	1.443 (3)	C10—H10A	0.9800	
C4A—C8A	1.388 (3)	C11—Cl3	1.761 (2)	
C4A—C5	1.408 (3)	C11—Cl2	1.770 (2)	
C5—C6	1.369 (4)	C11—C11	1.774 (2)	
С5—Н5А	0.9300	C12—H12A	0.9600	
C6—C7	1.395 (4)	C12—H12B	0.9600	
С6—Н6А	0.9300	C12—H12C	0.9600	
C7—C8	1.380 (3)	O2—H2	0.80 (3)	
С7—Н7А	0.9300			
C2—N1—C8A	117.84 (18)	N1—C8A—C8	118.7 (2)	
N1—C2—N3	124.22 (17)	C2—C9—C10	112.01 (16)	
N1—C2—C9	119.43 (17)	С2—С9—Н9А	109.2	
N3—C2—C9	116.35 (17)	C10—C9—H9A	109.2	
C2—N3—C4	121.31 (18)	С2—С9—Н9В	109.2	
C2—N3—C12	122.21 (17)	С10—С9—Н9В	109.2	
C4—N3—C12	116.47 (18)	H9A—C9—H9B	107.9	
O1—C4—N3	119.3 (2)	O2—C10—C9	113.49 (17)	
O1—C4—C4A	125.7 (2)	O2—C10—C11	105.21 (16)	
N3—C4—C4A	114.95 (18)	C9—C10—C11	111.45 (16)	
C8A—C4A—C5	120.6 (2)	O2-C10-H10A	108.9	
C8A—C4A—C4	119.60 (19)	C9—C10—H10A	108.9	
C5—C4A—C4	119.7 (2)	C11—C10—H10A	108.9	
C6—C5—C4A	119.3 (3)	C10—C11—Cl3	111.79 (15)	
С6—С5—Н5А	120.4	C10-C11-Cl2	110.34 (14)	
C4A—C5—H5A	120.4	Cl3—C11—Cl2	108.92 (12)	
C5—C6—C7	120.1 (2)	C10-C11-Cl1	110.05 (14)	
С5—С6—Н6А	119.9	Cl3—C11—Cl1	108.24 (11)	
С7—С6—Н6А	119.9	Cl2—C11—Cl1	107.38 (12)	
C8—C7—C6	121.1 (3)	N3—C12—H12A	109.5	
С8—С7—Н7А	119.5	N3—C12—H12B	109.5	
С6—С7—Н7А	119.5	H12A—C12—H12B	109.5	
C7—C8—C8A	119.4 (3)	N3—C12—H12C	109.5	
С7—С8—Н8А	120.3	H12A—C12—H12C	109.5	
C8A—C8—H8A	120.3	H12B—C12—H12C	109.5	
C4A—C8A—N1	121.8 (2)	C10—O2—H2	116 (2)	
C4A—C8A—C8	119.5 (2)			
C8A—N1—C2—N3	0.0 (3)	C5—C4A—C8A—N1	-179.8 (2)	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-179.45 (18) 4.6 (3) -175.97 (19) -176.9 (2) 2.6 (3) 175.7 (2) -2.9 (3) -5.5 (3) 175.87 (18) -178.8 (2) 2.5 (3) 2.7 (3) -176.0 (2) 0.9 (4) 179.3 (2) -1.5 (4) 0.8 (4)	C4—C4A—C8A—N1 C5—C4A—C8A—C8 C4—C4A—C8A—C8 C2—N1—C8A—C4A C2—N1—C8A—C4A C7—C8—C8A—C4A C7—C8—C8A—C4A C7—C8—C8A—N1 N1—C2—C9—C10 N3—C2—C9—C10 C2—C9—C10—C11 O2—C10—C11—C13 C9—C10—C11—C13 O2—C10—C11—C12 C9—C10—C11—C12 C9—C10—C11—C12 O2—C10—C11—C11 C2—C10—C11—C11 C2—C10—C11—C11	$\begin{array}{c} 1.8 (3) \\ 0.5 (3) \\ -178.0 (2) \\ -3.1 (3) \\ 176.62 (19) \\ -1.2 (3) \\ 179.1 (2) \\ -5.9 (3) \\ 174.59 (16) \\ -65.8 (2) \\ 175.64 (17) \\ -58.26 (19) \\ 65.1 (2) \\ -179.63 (14) \\ -56.2 (2) \\ 62.0 (2) \\ -174.54 (14) \end{array}$
C4A—C5—C6—C7 C5—C6—C7—C8 C6—C7—C8—C8A	-1.5 (4) 0.8 (4) 0.5 (4)	O2—C10—C11—Cl1 C9—C10—C11—Cl1	62.0 (2) -174.54 (14)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
O2—H2…N1	0.79 (3)	2.47 (3)	2.924 (2)	118 (3)
O2—H2···O1 ⁱ	0.79 (3)	2.13 (3)	2.842 (2)	149 (3)

Symmetry code: (i) -x+1, y-1/2, -z+1/2.