Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,4-Dibromo-6-\{[(5-chloro-2-methylphenyl)imino]methyl\}phenol

Yunfa Zheng

Department of Chemistry, Lishui University, Lishui 323000, People's Republic of China
Correspondence e-mail: zhyunfa@163.com

Received 23 June 2013; accepted 26 June 2013

Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.038 ; \omega R$ factor $=0.082$; data-to-parameter ratio $=14.9$.

In the molecular structure of the title Schiff base, $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{ClNO}$, the chlorophenyl ring and dibromophenol ring are almost coplanar; the dihedral angle between the planes of the two rings is $10.50(18)^{\circ}$. There is an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond, with an $\mathrm{O} \cdots \mathrm{N}$ distance of $2.576(4) \AA$. The crystal structure is stabilized by $\pi-\pi$ stacking of neighbouring aromatic rings along the b-axis direction [centroid-centroid distance $=3.6896(5) \AA$ A .

Related literature

For general background, see: Siddiqui et al. (2006); Fukuda et al. (2009); Elmali \& Elerman (1998); Karakas et al. (2004); Ebrahimipour et al. (2012). For the similar Schiff base structures, see: Zhou et al. (2009); Atalay et al. (2008).

Experimental

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{ClNO}$
Monoclinic, C2/c
$M_{r}=403.48$

$$
\begin{aligned}
& b=6.1828(10) \AA \\
& c=14.890(2) \AA \\
& \beta=102.594(15)^{\circ} \\
& V=2839.4(8) \AA^{3} \\
& Z=8
\end{aligned}
$$

Data collection
Bruker APEXII CCD
diffractometer

Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.123, T_{\text {max }}=0.171$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.082$
$S=1.00$
2600 reflections

Mo $K \alpha$ radiation
$\mu=5.89 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
$0.38 \times 0.35 \times 0.30 \mathrm{~mm}$

5369 measured reflections 2600 independent reflections 1839 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.035$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1$	0.82	1.85	$2.576(4)$	147

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

The author acknowledge Lishui University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2407).

References

Atalay, Ş., Erdem, T. K., Erşahinb, F. \& Tınkılıç, N. (2008). Acta Cryst., E64, o92.
Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsn, USA.
Ebrahimipour, S. Y., Mague, J. T., Akbari, A. \& Takjoo, R. (2012). J. Mol. Struct. 1028, 148-155.
Elmali, A. \& Elerman, Y. (1998). J. Mol. Struct. 442, 31-37.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Fukuda, H., Amimoto, K., Koyama, H. \& Kawato, T. (2009). Tetrahedron Lett. 50, 5376-5378.
Karakas, A., Elmali, A., Ünverc, H. \& Svoboda, I. (2004). J. Mol. Struct. 702, 103-110.
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Siddiqui, H. L., Iqbal, A., Ahmad, S. \& Weaver, G. W. (2006). Molecules, 11, 206-211.
Zhou, J.-C., Li, N.-X., Zhang, C.-M. \& Zhang, Z.-Y. (2009). Acta Cryst. E65, o1949.

supporting information

Acta Cryst. (2013). E69, o1190 [https://doi.org/10.1107/S1600536813017558]

2,4-Dibromo-6-\{[(5-chloro-2-methylphenyl)imino]methyl\}phenol

Yunfa Zheng

S1. Comment

The Schiff bases derived from salicylaldehyde and methylaniline with various alkyl or halogen substituents have demonstrated potential application in pharmacal field, which have being tested for their antitumor, antimicrobial and antiviral activities (Siddiqui et al., 2006). Schiff base compounds were also studied with respect to photochromic fluorescence materials (Fukuda et al., 2009; Elmali et al., 1998) and photochromic nonlinear optical materials (Karakas et al., 2004). Moreover, Schiff bases have significant importance in the development of Schiff base metal complexes, because Schiff base ligands are potentially capable of forming stable complexes by coordination of metal ions with their oxygen and nitrogen donors (Ebrahimipour et al., 2012). As an extension work on the structural characterization of Schiff base compounds, the title compound is reported.

The molecule of title compound adopts an E configuration, with a $\mathrm{C} 6-\mathrm{N} 1=\mathrm{C} 8-\mathrm{C} 9$ torsion angle of $178.4(3)^{\circ}$. The bond distance of $\mathrm{N} 1=\mathrm{C} 8$ at $1.266(4) \AA$ is typical of a double bond, which is comparable to those found in similar structures (1.275 (4) \AA, Zhou et al., 2009; 1.264 (10) \AA, Atalay et al., 2008). The average bond lengths of $\mathrm{C}-\mathrm{Br}$ at 1.890 (4) \AA is longer than that of $\mathrm{C}-\mathrm{Cl}$ at 1.744 (4) \AA due to the radius of Br atom is bigger than that of Cl atom. It is noteworthy to note that H 1 atom bonded to O 1 is involved in $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1$ intramolecular hydrogen bond, which resulted in formation of sixmembered ring ($\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1=\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$) (Fig. 1). The dibromophenol ring is almost coplanar with the chlorophenyl ring with the dihedral angle between the two planes is $10.50(18)^{\circ}$. Furthermore, the aromatic ring in the molecule is nearly parallel to the aromatic ring of its neighboring molecule with a ring-to-ring distance of 3.4715 (5) \AA (3.6896 (5) \AA) and an off-centre angle of 21.98°, indicating a weak $\pi \cdots \pi$ stacking interaction between the aromatic rings (Fig. 2). The packing diagram of the title compound shown stacks are arranged in a centrosymmetric manner and a C_{2} axis passing through the middle point of ac plane (Fig. 3).

S2. Experimental

A mixture of 5-chloro-2-methylaniline ($1.42 \mathrm{~g}, 10 \mathrm{mmol}$), 3,5-dibromo-2-hydroxybenzaldehyde ($2.80 \mathrm{~g}, 10 \mathrm{mmol}$) in 50 $\mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was refluxed under an Ar atmosphere for about 6 h to yield a yellow precipitate. The product was collected by filtration and washed with cold ethanol to give Schiff base compoud in 92.2% yield (3.55 g). The yellow single crystals suitable for X-ray analysis were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ absolute ethanol (3/2) systems by slow evaporation of the solvents at room temperature over a period of about one week.

S3. Refinement

Hydrogen atoms for the carbon atoms were placed in geometrically idealized positions and constrained to ride on their parent with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $0.93 \AA$ for methyl and aryl type H -atoms, respectively, and refined in a riding mode with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ for aromatic H and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl H .

Figure 1
Molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius. Dashed line indicates intramolecular hydrogen bond.

Figure 2
The $\pi \cdots \pi$ stacking of the title compound along the b axis.

Figure 3
A packing diagram of the title compound, viewed along the b axis, showing the centrosymmetric arrangement.

2,4-Dibromo-6-\{[(5-chloro-2-methylphenyl)imino]methyl\}phenol

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{ClNO}$
$M_{r}=403.48$
Monoclinic, $C 2 / c$
Hall symbol: -C 2yc
$a=31.603$ (5) A
$b=6.1828(10) \AA$
$c=14.890(2) \AA$
$\beta=102.594(15)^{\circ}$
$V=2839.4$ (8) \AA^{3}
$Z=8$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ - and ω-scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.123, T_{\text {max }}=0.171$
$F(000)=1568$
$D_{\mathrm{x}}=1.888 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1332 reflections
$\theta=3.2-29.4^{\circ}$
$\mu=5.89 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Block, yellow
$0.38 \times 0.35 \times 0.30 \mathrm{~mm}$

5369 measured reflections
2600 independent reflections
1839 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=25.4^{\circ}, \theta_{\text {min }}=3.4^{\circ}$
$h=-38 \rightarrow 37$
$k=-7 \rightarrow 7$
$l=-12 \rightarrow 17$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained

174 parameters
0 restraints

supporting information

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.033 P)^{2}\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \rho_{\max }=0.41 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.37 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
Br1	$0.032809(16)$	$0.04959(8)$	$0.15977(4)$	$0.07156(19)$
Br2	$0.214268(14)$	$0.15664(7)$	$0.23337(3)$	$0.06296(18)$
C11	$0.04381(4)$	$1.43342(19)$	$-0.16015(9)$	$0.0733(4)$
O1	$0.18961(8)$	$0.5562(4)$	$0.1191(2)$	$0.0543(7)$
H1	0.1827	0.6566	0.0829	0.081^{*}
N1	$0.13813(10)$	$0.8234(4)$	$0.0161(2)$	$0.0398(7)$
C1	$0.09405(12)$	$1.1128(6)$	$-0.0732(3)$	$0.0425(9)$
H1A	0.0687	1.0563	-0.0605	0.051^{*}
C2	$0.09307(13)$	$1.2987(6)$	$-0.1244(3)$	$0.0446(10)$
C3	$0.12950(15)$	$1.3817(7)$	$-0.1455(3)$	$0.0525(11)$
H3	0.1281	1.5071	-0.1805	0.063^{*}
C4	$0.16871(14)$	$1.2770(6)$	$-0.1143(3)$	$0.0511(11)$
H4	0.1936	1.3326	-0.1293	0.061^{*}
C5	$0.17164(12)$	$1.0909(6)$	$-0.0610(3)$	$0.0417(9)$
C6	$0.13395(12)$	$1.0104(6)$	$-0.0405(2)$	$0.0371(9)$
C7	$0.21455(13)$	$0.9824(7)$	$-0.0262(3)$	$0.0567(11)$
H7A	0.2227	0.9965	0.0395	0.085^{*}
H7B	0.2361	1.0493	-0.0535	0.085^{*}
H7C	0.2122	0.8319	-0.0424	0.085^{*}
C8	$0.10618(13)$	$0.7192(6)$	$0.0326(3)$	$0.0416(9)$
H8	0.0782	0.7678	0.0079	0.050^{*}
C9	$0.11218(12)$	$0.5254(5)$	$0.0891(2)$	$0.0373(9)$
C10	$0.15431(12)$	$0.4507(6)$	$0.1287(2)$	$0.0381(9)$
C11	$0.15814(12)$	$0.2580(6)$	$0.1790(2)$	$0.0391(9)$
C12	$0.12263(13)$	$0.1421(6)$	$0.1892(2)$	$0.0433(10)$
H12	0.1260	0.0137	0.2225	0.052^{*}
C13	$0.08149(12)$	$0.2177(6)$	$0.1493(3)$	$0.0426(9)$
C14	$0.07621(12)$	$0.4088(6)$	$0.1011(3)$	$0.0435(10)$
H14	0.0485	0.4603	0.0764	0.052^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.0586(3)$	$0.0699(3)$	$0.0919(4)$	$-0.0168(2)$	$0.0287(3)$	$0.0172(3)$
Br2	$0.0527(3)$	$0.0652(3)$	$0.0679(3)$	$0.0080(2)$	$0.0066(2)$	$0.0210(2)$
C11	$0.0641(8)$	$0.0718(8)$	$0.0766(9)$	$0.0211(6)$	$-0.0010(6)$	$0.0219(6)$
O1	$0.0407(16)$	$0.0495(17)$	$0.070(2)$	$-0.0082(13)$	$0.0062(14)$	$0.0174(14)$
N1	$0.0429(19)$	$0.0362(17)$	$0.0400(19)$	$-0.0028(15)$	$0.0082(15)$	$0.0012(15)$
C1	$0.040(2)$	$0.039(2)$	$0.047(2)$	$-0.0042(18)$	$0.0064(19)$	$0.0021(19)$
C2	$0.048(2)$	$0.043(2)$	$0.039(2)$	$0.0113(19)$	$0.0019(19)$	$0.0023(19)$
C3	$0.070(3)$	$0.043(2)$	$0.043(3)$	$0.001(2)$	$0.010(2)$	$0.0080(19)$
C4	$0.055(3)$	$0.055(3)$	$0.046(3)$	$-0.009(2)$	$0.017(2)$	$0.005(2)$
C5	$0.047(2)$	$0.041(2)$	$0.037(2)$	$-0.0023(18)$	$0.0093(19)$	$0.0002(18)$
C6	$0.045(2)$	$0.031(2)$	$0.035(2)$	$-0.0017(17)$	$0.0076(18)$	$-0.0045(16)$
C7	$0.044(2)$	$0.071(3)$	$0.056(3)$	$-0.002(2)$	$0.013(2)$	$0.013(2)$
C8	$0.038(2)$	$0.037(2)$	$0.050(2)$	$0.0060(18)$	$0.0096(19)$	$0.0013(18)$
C9	$0.042(2)$	$0.034(2)$	$0.038(2)$	$-0.0011(17)$	$0.0124(18)$	$-0.0015(17)$
C10	$0.044(2)$	$0.034(2)$	$0.038(2)$	$-0.0053(18)$	$0.0106(18)$	$-0.0038(17)$
C11	$0.043(2)$	$0.037(2)$	$0.037(2)$	$0.0001(17)$	$0.0105(18)$	$0.0001(18)$
C12	$0.061(3)$	$0.035(2)$	$0.038(2)$	$0.0003(19)$	$0.019(2)$	$0.0013(17)$
C13	$0.042(2)$	$0.045(2)$	$0.042(2)$	$-0.0095(19)$	$0.0130(19)$	$-0.0016(19)$
C14	$0.040(2)$	$0.043(2)$	$0.050(2)$	$0.0046(18)$	$0.0132(19)$	$0.0041(19)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Br1-C13	1.891 (4)	C5-C6	1.385 (5)
$\mathrm{Br} 2-\mathrm{C} 11$	1.889 (4)	C5-C7	1.500 (5)
$\mathrm{C} 11-\mathrm{C} 2$	1.744 (4)	C7-H7A	0.9600
$\mathrm{O} 1-\mathrm{C} 10$	1.327 (4)	C7-H7B	0.9600
O1-H1	0.8200	C7-H7C	0.9600
N1-C8	1.266 (4)	C8-C9	1.453 (5)
N1-C6	1.420 (4)	C8-H8	0.9300
C1-C2	1.376 (5)	C9-C14	1.390 (5)
C1-C6	1.400 (5)	C9-C10	1.411 (5)
C1-H1A	0.9300	C10-C11	1.398 (5)
C2-C3	1.358 (6)	C11-C12	1.367 (5)
C3-C4	1.385 (6)	C12-C13	1.387 (5)
C3-H3	0.9300	C12-H12	0.9300
C4-C5	1.389 (5)	C13-C14	1.373 (5)
C4-H4	0.9300	C14-H14	0.9300
C10-O1-H1	109.5	H7A-C7-H7C	109.5
C8-N1-C6	123.7 (3)	H7B-C7-H7C	109.5
C2- $21-\mathrm{C} 6$	118.7 (4)	N1-C8-C9	121.5 (3)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	120.7	N1-C8-H8	119.2
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	120.7	C9-C8-H8	119.2
C3-C2-C1	121.8 (4)	C14-C9-C10	120.0 (3)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Cl} 1$	119.6 (3)	C14-C9-C8	119.7 (3)

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Cl} 1$	$118.6(3)$	$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$	$120.3(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$119.1(4)$	$\mathrm{O} 1-\mathrm{C} 10-\mathrm{C} 11$	$120.0(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.4	$\mathrm{O} 1-\mathrm{C} 10-\mathrm{C} 9$	$122.2(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.4	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 9$	$117.8(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$121.5(4)$	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 10$	$121.9(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	119.3	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{Br} 2$	$119.7(3)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	119.3	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{Br} 2$	$118.4(3)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$118.0(3)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$119.4(3)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 7$	$121.3(3)$	$\mathrm{C} 13-\mathrm{C} 12-\mathrm{H} 12$	120.3
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 712$	120.3		
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$120.7(4)$	$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 12$	$120.6(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1$	$120.9(3)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{Cr} 13-\mathrm{Br} 1$	$120.5(3)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 1$	$116.8(3)$	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 9$	$120.9(3)$
$\mathrm{C} 5-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	$122.3(3)$	$\mathrm{C} 9-\mathrm{C} 14-\mathrm{H} 14$	119.9
$\mathrm{C} 5-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	109.5	119.9	
$\mathrm{H} 7 \mathrm{~A}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	109.5		
$\mathrm{C} 5-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	109.5		
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 6$	109.5		

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{~N} 1$	0.82	1.85	$2.576(4)$	147

