Acta Crystallographica Section E

 Structure Reports

 Structure Reports
 Online
 ISSN 1600-5368

 (E)-1-(2-Aminophenyl)-3-(thiophen-2-yl)-

 (E)-1-(2-Aminophenyl)-3-(thiophen-2-yl)-prop-2-en-1-one

prop-2-en-1-one}

Suchada Chantrapromma, ${ }^{\mathbf{a} *} \ddagger$ Pumsak Ruanwas, ${ }^{\text {a }}$ Nawong Boonnak ${ }^{\text {b }}$ and Hoong-Kun Fun ${ }^{\text {c,d }} \S$
${ }^{\text {a }}$ Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, ${ }^{\mathbf{b}}$ Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, ${ }^{\text {C } X \text {-ray Crystallography Unit, School }}$ of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and
${ }^{\text {d}}$ Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
Correspondence e-mail: suchada.c@psu.ac.th

Received 8 May 2013; accepted 22 May 2013
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.051 ; w R$ factor $=0.127$; data-to-parameter ratio $=25.8$.

The molecule of the title heteroaryl chalcone derivative, $\mathrm{C}_{13} \mathrm{H}_{11}$ NOS, exists in a trans-configuaration and is almost planar with a dihedral angle of 3.73 (8) ${ }^{\circ}$ between the phenyl and thiophene rings. An intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond generates an $S(6)$ ring motif. In the crystal, two adjacent molecules are linked into a dimer in an anti-parallel face-toface manner by a pair of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions. Neighboring dimers are further linked into chains along the c-axis direction by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Related literature

For standard bond lengths, see: Allen et al. (1987). For graphset notation, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2011); Suwunwong et al. (2009). For background to and applications of chalcones, see: Go et al. (2005); Liu et al. (2008); Molyneux (2004); Nerya et al. (2004); Ni et al. (2004); Shenvi et al. (2013); Suwunwong et al. (2011). For the stability of the temperature controller used in the data collection, see: Cosier \& Glazer, (1986).

Experimental

Crystal data
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NOS}$
$M_{r}=229.30$
\ddagger Thomson Reuters ResearcherID: A-5085-2009.
§ Additional correspondence author, email: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Monoclinic, $C 2 /$ c
$a=24.9335$ (4) \AA
$b=5.0278$ (1) \AA
$c=18.6813$ (3) \AA
$\beta=111.151$ (1) ${ }^{\circ}$
$V=2184.13(7) \AA^{3}$
$Z=8$
Mo $K \alpha$ radiation
$\mu=0.27 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.36 \times 0.12 \times 0.06 \mathrm{~mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009)
$T_{\text {min }}=0.908, T_{\text {max }}=0.984$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.127$
$S=1.04$
3942 reflections
153 parameters

14827 measured reflections
3942 independent reflections 2620 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.036$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N 1 \cdots \mathrm{O} 1$	$0.83(2)$	$1.97(2)$	$2.6253(18)$	$135.6(19)$
$\mathrm{N} 1-\mathrm{H} 2 N 1 \cdots \mathrm{~N} 1^{\mathrm{i}}$	$0.86(2)$	$2.34(2)$	$3.184(2)$	$169(2)$
$\mathrm{C} 11-\mathrm{H} 11 A \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.95	2.56	$3.278(2)$	133
Symmetry codes: (i) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{3}{2} ;$ (ii) $-x+\frac{1}{2},-y+\frac{1}{2},-z+1$.				

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

Financial support from the Thailand Research Fund through the Royal Golden Jubilee PhD Program (grant No. PHD/0314/2552) is gratefully acknowledged. The authors extend their appreciation to Prince of Songkla University, the Deanship of Scientific Research at King Saud University and Universiti Sains Malaysia for the APEX DE2012 grant No. 1002/PFIZIK/910323.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5065).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
Fun, H.-K., Suwunwong, T., Anantapong, T., Karalai, C. \& Chantrapromma, S. (2011). Acta Cryst. E67, o3074-o3075.

Go, M.-L., Wu, X. \& Liu, X.-L. (2005). Curr. Med. Chem. 12, 483-499.
Liu, X. L., Xu, Y. J. \& Go, M. L. (2008). Eur. J. Med. Chem. 43, 1681-1687.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Molyneux, P. (2004). Songklanakarin J. Sci. Technol. 26, 211-219.

organic compounds

Nerya, O., Musa, R., Khatib, S., Tamir, S. \& Vaya, J. (2004). Phytochem. 65, 1389-1395.
Ni, L., Meng, C. Q. \& Sikorski, J. A. (2004). Expert Opin. Ther. Pat. 14, 16691691.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shenvi, S., Kumar, K., Hatti, K. S., Rijesh, K., Diwakar, L. \& Reddy, G. C. (2013). Eur. J. Med. Chem. 62, 435-442.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Suwunwong, T., Chantrapromma, S. \& Fun, H.-K. (2011). Chem. Pap. 65, 890897.

Suwunwong, T., Chantrapromma, S., Pakdeevanich, P. \& Fun, H.-K. (2009). Acta Cryst. E65, o1575-o1576.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2013). E69, o1004-o1005 [https://doi.org/10.1107/S1600536813014189]

(E)-1-(2-Aminophenyl)-3-(thiophen-2-yl)prop-2-en-1-one

Suchada Chantrapromma, Pumsak Ruanwas, Nawong Boonnak and Hoong-Kun Fun

S1. Comment

The basic structure of chalcones consists of two aromatic rings bound by an α, β-unsaturated carbonyl group, a unique template associated with various biological activities such as analgesic, anti-inflammatory, antibacterial (Go et al., 2005; Liu et al., 2008; Ni et al., 2004), anticancer and antioxidant (Shenvi et al., 2013) as well as tyrosinase inhibitory (Nerya et al., 2004) and fluorescence (Suwunwong et al., 2011) properties. The title compound (I) was synthesized and studied for antioxidant activity by the DPPH scavenging method (Molyneux, 2004). Our result showed that (I) exhibits a weakly antioxidant activity. It was also tested for antityrosinase activity but found to be inactive. Herein we report the crystal structure of (I).
The molecular structure of (I) exists in a trans configuration with respect to the $\mathrm{C} 8=\mathrm{C} 9$ double bond $\left[1.340(2)^{\circ}\right]$ as indicated by the torsion angle C7-C8-C9-C10 = 179.29 (15) ${ }^{\circ}$ (Fig. 1). The whole molecule is almost planar, the interplanar angle between phenyl and thiophene rings being 3.73 (8) ${ }^{\circ}$ (Fig. 2). The propenone unit (C7- $\mathrm{C} 9 / \mathrm{O} 1$) is almost planar with the torsion angle $\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9=-7.8(2)^{\circ}$. The mean plane through the propenone bridge makes the dihedral angles of $7.37(10)$ and $3.66(10)^{\circ}$ with the phenyl and thiophene rings, respectively. Intramolecular N1— H1N1 \cdots O1 hydrogen bond between amino and enone groups (Fig. 1 and Table 1) generates $\mathrm{S}(6)$ ring motif (Bernstein et al., 1995). This intramolecular hydrogen bond helps to stabilize the planarity of the structure. However it may result in the prohibition of the α, β-unsaturated carbonyl moiety to be reactive. The bond distances in (I) agree with the literature values (Allen et al., 1987) and are comparable with those observed in related structures (Fun et al., 2011; Suwunwong et al., 2009).
In the crystal packing (Fig. 3), two adjacent molecules are linked in an anti-parallel face-to-face manner into a dimer by a pair of $\mathrm{C}_{\text {thiophene }}-\mathrm{H} \cdots \mathrm{O}$ interactions and the neighboring dimers are further linked into chains along the c axis by $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Fig. 4 and Table 1).

S2. Experimental

The title compound (I) was prepared by mixing 2-aminoacetophenone ($0.40 \mathrm{~g}, 3 \mathrm{mmol}$) and 2-thiophenecarboxaldehyde ($0.34 \mathrm{~g}, 3 \mathrm{mmol}$) in ethanol (30 ml). $30 \% \mathrm{NaOH}$ aqueous solution $(5 \mathrm{ml})$ was then added and the mixture was stirred at room temperature for 2 hr . The yellow solid formed was filtered and washed with distilled water. Yellow block-shaped single crystals of (I) suitable for x-ray structure determination were recrystallized from ethanol by slow evaporation at room temperature over a few weeks. M.p. 407-408 K.

S3. Refinement

Amino H atoms were located in difference maps and refined isotropically. The remaining H atoms were fixed geometrically and allowed to ride on their parent atoms, with $\mathrm{d}(\mathrm{C}-\mathrm{H})=0.93 \AA$ for aromatic and 0.98 for CH . The $U_{\text {iso }}$ values were constrained to be $1.2 U_{\text {eq }}$ of the carrier atoms. Four outliers (154,552,-155,-33315) were omitted from
the last refinement cycles.

Figure 1
The asymmetric unit of the title compound showing 50% probability displacement ellipsoid. Intramolecular $\mathrm{N}-\mathrm{H}^{\cdots} \mathrm{O}$ hydrogen bond is drawn as dashed line.


```
mean: C1-C6
```

Figure 2
The molecular structure of the title compound showing the approximate planarity of the molecule and the interplanar angle between phenyl and thophene rings.

Figure 3
The crystal packing of the title compound viewed along the b axis. Hydrogen bonds are drawn as dashed lines.

Figure 4
The crystal packing of the title compound, showing a chain of dimers running along the c axis. Hydrogen bonds are drawn as dashed lines.
(E)-1-(2-Aminophenyl)-3-(thiophen-2-yl)prop-2-en-1-one

Crystal data
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NOS}$

$$
M_{r}=229.30
$$

$$
\text { Monoclinic, } C 2 / c
$$

Hall symbol: -C 2yc

$$
a=24.9335(4) \AA
$$

$$
b=5.0278(1) \AA
$$

$$
c=18.6813(3) \AA
$$

$$
\beta=111.151(1)^{\circ}
$$

$$
\begin{aligned}
& V=2184.13(7) \AA^{3} \\
& Z=8 \\
& F(000)=960 \\
& D_{\mathrm{x}}=1.395 \mathrm{Mg} \mathrm{~m} \\
& \text { Melting point }=407-408 \mathrm{~K} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 3942 \text { reflections } \\
& \theta=1.8-32.5^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\mu & =0.27 \mathrm{~mm}^{-1} \\
T & =100 \mathrm{~K}
\end{aligned}
$$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\text {min }}=0.908, T_{\text {max }}=0.984$

Block, yellow
$0.36 \times 0.12 \times 0.06 \mathrm{~mm}$

14827 measured reflections
3942 independent reflections
2620 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=32.5^{\circ}, \theta_{\text {min }}=1.8^{\circ}$
$h=-37 \rightarrow 37$
$k=-7 \rightarrow 5$
$l=-28 \rightarrow 28$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.127$
$S=1.04$
3942 reflections
153 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0488 P)^{2}+2.0262 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.39 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.45 \mathrm{e}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier \& Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\mathrm{eq}}$
S1	$0.071728(19)$	$-0.24213(9)$	$0.38943(3)$	$0.02647(13)$
O1	$0.21891(5)$	$0.4157(2)$	$0.59945(7)$	$0.0243(3)$
N1	$0.22281(6)$	$0.7977(3)$	$0.69701(8)$	$0.0196(3)$
H1N1	$0.2382(8)$	$0.721(4)$	$0.6700(11)$	$0.021(5)^{*}$
H2N1	$0.2361(9)$	$0.944(5)$	$0.7198(12)$	$0.037(6)^{*}$
C1	$0.13438(6)$	$0.5801(3)$	$0.61394(9)$	$0.0157(3)$
C2	$0.16405(7)$	$0.7756(3)$	$0.66901(9)$	$0.0161(3)$
C3	$0.13202(7)$	$0.9494(3)$	$0.69732(9)$	$0.0193(3)$
H3A	0.1516	1.0791	0.7346	0.023^{*}
C4	$0.07321(7)$	$0.9354(3)$	$0.67233(10)$	$0.0210(3)$
H4A	0.0526	1.0560	0.6919	0.025^{*}

C5	$0.04342(7)$	$0.7438(3)$	$0.61801(10)$	$0.0214(3)$
H5A	0.0027	0.7337	0.6007	0.026^{*}
C6	$0.07387(7)$	$0.5711(3)$	$0.59021(9)$	$0.0197(3)$
H6A	0.0535	0.4408	0.5537	0.024^{*}
C7	$0.16602(7)$	$0.3989(3)$	$0.58064(9)$	$0.0166(3)$
C8	$0.13517(7)$	$0.1944(3)$	$0.52357(9)$	$0.0176(3)$
H8A	0.0955	0.1613	0.5126	0.021^{*}
C9	$0.16398(7)$	$0.0568(3)$	$0.48761(9)$	$0.0181(3)$
H9A	0.2034	0.1021	0.5010	0.022^{*}
C10	$0.14298(7)$	$-0.1511(3)$	$0.43121(9)$	$0.0186(3)$
C11	$0.17609(7)$	$-0.3053(3)$	$0.40209(10)$	$0.0210(3)$
H11A	0.2166	-0.2864	0.4176	0.025^{*}
C12	$0.14450(8)$	$-0.4928(4)$	$0.34746(10)$	$0.0267(4)$
H12A	0.1613	-0.6149	0.3228	0.032^{*}
C13	$0.08760(8)$	$-0.4801(4)$	$0.33398(10)$	$0.0275(4)$
H13A	0.0596	-0.5897	0.2981	0.033^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0228(2)$	$0.0244(2)$	$0.0278(2)$	$0.00019(17)$	$0.00385(17)$	$-0.00763(19)$
O1	$0.0191(6)$	$0.0249(6)$	$0.0278(7)$	$-0.0020(5)$	$0.0071(5)$	$-0.0082(5)$
N1	$0.0185(7)$	$0.0191(7)$	$0.0187(7)$	$-0.0015(5)$	$0.0035(6)$	$-0.0039(6)$
C1	$0.0186(7)$	$0.0133(6)$	$0.0144(7)$	$-0.0012(6)$	$0.0050(6)$	$0.0004(6)$
C2	$0.0203(7)$	$0.0143(6)$	$0.0125(7)$	$-0.0003(6)$	$0.0043(6)$	$0.0027(6)$
C3	$0.0265(8)$	$0.0151(7)$	$0.0144(7)$	$-0.0006(6)$	$0.0054(6)$	$-0.0005(6)$
C4	$0.0265(8)$	$0.0185(7)$	$0.0195(8)$	$0.0037(6)$	$0.0100(7)$	$0.0003(6)$
C5	$0.0180(7)$	$0.0224(7)$	$0.0241(8)$	$0.0004(7)$	$0.0078(6)$	$-0.0015(7)$
C6	$0.0218(8)$	$0.0172(7)$	$0.0186(8)$	$-0.0024(6)$	$0.0056(6)$	$-0.0020(6)$
C7	$0.0195(8)$	$0.0144(7)$	$0.0151(7)$	$-0.0004(6)$	$0.0055(6)$	$0.0012(6)$
C8	$0.0190(7)$	$0.0149(7)$	$0.0180(7)$	$-0.0012(6)$	$0.0057(6)$	$0.0003(6)$
C9	$0.0201(8)$	$0.0163(7)$	$0.0172(7)$	$-0.0020(6)$	$0.0060(6)$	$0.0001(6)$
C10	$0.0241(8)$	$0.0151(7)$	$0.0179(8)$	$-0.0014(6)$	$0.0090(6)$	$0.0003(6)$
C11	$0.0252(8)$	$0.0202(8)$	$0.0228(8)$	$-0.0027(6)$	$0.0148(7)$	$-0.0014(6)$
C12	$0.0443(11)$	$0.0195(8)$	$0.0221(9)$	$-0.0013(8)$	$0.0191(8)$	$-0.0029(7)$
C13	$0.0384(10)$	$0.0205(8)$	$0.0192(8)$	$-0.0038(7)$	$0.0050(7)$	$-0.0055(7)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{S} 1-\mathrm{C} 13$	$1.7195(19)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.373(2)$
$\mathrm{S} 1-\mathrm{C} 10$	$1.7245(17)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9500
$\mathrm{O} 1-\mathrm{C} 7$	$1.2392(19)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	0.9500
$\mathrm{~N} 1-\mathrm{C} 2$	$1.371(2)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.481(2)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1$	$0.83(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.340(2)$
$\mathrm{N} 1-\mathrm{H} 2 \mathrm{~N} 1$	$0.86(2)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9500
$\mathrm{C} 1-\mathrm{C} 6$	$1.412(2)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.442(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.422(2)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	0.9500
$\mathrm{C} 1-\mathrm{C} 7$	$1.481(2)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.380(2)$

C2-C3	1.409 (2)
C3-C4	1.371 (2)
C3-H3A	0.9500
C4-C5	1.402 (2)
C4-H4A	0.9500
C13-S1-C10	91.94 (9)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1$	113.2 (13)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 2 \mathrm{~N} 1$	115.3 (14)
H1N1-N1-H2N1	122 (2)
C6- $\mathrm{C} 1-\mathrm{C} 2$	117.86 (14)
C6- $\mathrm{C} 1-\mathrm{C} 7$	121.29 (14)
C2-C1-C7	120.81 (14)
N1-C2-C3	118.61 (14)
N1-C2-C1	122.50 (14)
C3-C2-C1	118.88 (14)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	121.45 (15)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.3
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.3
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	120.26 (15)
C3-C4-H4A	119.9
C5-C4-H4A	119.9
C6-C5-C4	119.19 (15)
C6-C5-H5A	120.4
C4-C5-H5A	120.4
C5-C6-C1	122.36 (15)
C5-C6-H6A	118.8
C1-C6-H6A	118.8
C6- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	178.64 (14)
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	-3.6 (2)
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	0.2 (2)
C7-C1-C2-C3	177.97 (14)
N1-C2-C3-C4	-179.23 (15)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-0.7 (2)
C2-C3-C4-C5	0.7 (2)
C3-C4-C5-C6	-0.1 (3)
C4-C5-C6-C1	-0.5 (3)
C2- $21-\mathrm{C} 6-\mathrm{C} 5$	0.4 (2)
C7-C1-C6-C5	-177.38 (15)
C6- $\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 1$	176.95 (15)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 1$	-0.8 (2)
C6- $1-\mathrm{C} 7-\mathrm{C} 8$	-2.6 (2)

$\mathrm{C} 11-\mathrm{C} 12$	$1.404(2)$
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	0.9500
$\mathrm{C} 12-\mathrm{C} 13$	$1.350(3)$
$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	0.9500
$\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	0.9500
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 1$	$120.84(14)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8$	$118.34(14)$
$\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$	$120.82(14)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$119.10(15)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	120.4
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	120.4
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$128.46(15)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	115.8
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	115.8
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 9$	$125.77(15)$
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{S} 1$	$109.74(12)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{S} 1$	$124.49(12)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$113.91(16)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	123.0
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	123.0
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 11$	$112.33(16)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	123.8
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	123.8
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{S} 1$	$112.06(13)$
C12-C13-H13A	124.0
S1-C13-H13A	124.0

$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$	$179.69(14)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-7.8(2)$
$\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$171.71(14)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$179.29(15)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$-172.66(17)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{S} 1$	$7.8(3)$
$\mathrm{C} 13-\mathrm{S} 1-\mathrm{C} 10-\mathrm{C} 11$	$-0.44(13)$
$\mathrm{C} 13-\mathrm{S} 1-\mathrm{C} 10-\mathrm{C} 9$	$179.13(15)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$-179.72(16)$
$\mathrm{S} 1-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$-0.15(18)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$0.9(2)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{S} 1$	$-1.2(2)$
$\mathrm{C} 10-\mathrm{S} 1-\mathrm{C} 13-\mathrm{C} 12$	$0.96(15)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 N 1 \cdots \mathrm{O} 1$	$0.83(2)$	$1.97(2)$	$2.6253(18)$	$135.6(19)$

supporting information

$\mathrm{N} 1 — \mathrm{H} 2 N 1 \cdots \mathrm{~N}^{\mathrm{i}}$	$0.86(2)$	$2.34(2)$	$3.184(2)$	$169(2)$
$\mathrm{C} 11 — \mathrm{H} 11 A \cdots 1^{\mathrm{ii}}$	0.95	2.56	$3.278(2)$	133

Symmetry codes: (i) $-x+1 / 2, y+1 / 2,-z+3 / 2$; (ii) $-x+1 / 2,-y+1 / 2,-z+1$.

