Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4,4'-Dimethyl-2,2'-{[2,3,3a,4,5,6,7,7aoctahydro-1H-benzimidazole-1,3-diyl]bis(methylene)}diphenol

Augusto Rivera,^a* Héctor Jairo Osorio,^b Mauricio Maldonado,^a Jaime Ríos-Motta^a and Michael Bolte^c

^aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No. 45-03, Bogotá, Código Postal 111321, Colombia, ^bUniversidad Nacional de Colombia, Sede Manizales, Colombia, and ^cInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main. Germany

Correspondence e-mail: ariverau@unal.edu.co

Received 28 May 2013; accepted 1 June 2013

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.034; wR factor = 0.090; data-to-parameter ratio = 16.8.

The asymmetric unit of the title compound, $C_{23}H_{30}N_2O_2$, contains one half-molecule, with a twofold axis splitting the molecule in two identical halves. The structure of the racemic mixture has been reported previously [Rivera et al. (2009) J. Chem. Crystallogr. 39, 827-830] but the enantiomer reported here crystallized in the *orthorhombic* space group $P2_12_12$ (Z = 2), whereas the racemate occurs in the *triclinic* space group $P\overline{1}$ (Z = 2). The observed molecular conformation is stabilized by two intramolecular $O-H \cdots N$ hydrogen bonds, which generate rings with graph-set motif S(6). In the crystal, molecules are linked via non-classical C-H···O interactions, which stack the molecules along the b axis.

Related literature

For the structure of the original racemate, see: Rivera et al. (2009). For the use of 1,3-diazaheterocyclic-bridged bis(phenols) in coordination chemistry, see: Kober et al. (2012); Xu et al. (2007). For the synthesis of the precursor, (2R,7R)-1,8,10,12-tetraazatetracyclo[8.3.11^{8,12}.0^{2,7}]pentadecane, see: Rivera et al. (2012). For bond-length data, see: Allen et al. (1987). For graph-set analysis, see: Bernstein et al. (1995).

Experimental

Crystal data

C23H30N2O2 $V = 1004.64 (10) \text{ Å}^3$ $M_r = 366.49$ Z = 2Orthorhombic, P21212 Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$ a = 18.5417 (9) Å b = 6.0597 (4) Å T = 173 Kc = 8.9415 (5) Å $0.31 \times 0.27 \times 0.12 \text{ mm}$

Data collection

STOE IPDS II two-circle-12723 measured reflections diffractometer 2168 independent reflections Absorption correction: multi-scan 2058 reflections with $I > 2\sigma(I)$ (X-AREA; Stoe & Cie, 2001) $R_{\rm int} = 0.053$ $T_{\min} = 0.976, T_{\max} = 0.991$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	H atoms treated by a mixture of
$wR(F^2) = 0.090$	independent and constrained
S = 1.04	refinement
2168 reflections	$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
129 parameters	$\Delta \rho_{\rm min} = -0.13 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$\begin{array}{c} O1 - H1 \cdots N1 \\ C4 - H4 \cdots O1^{i} \\ C5 - H5B \cdots O1^{ii} \end{array}$	1.03 (4)	1.73 (4)	2.667 (2)	150 (3)
	0.99	2.63	3.3749 (13)	133
	0.99	2.63	3.522 (2)	150

Symmetry codes: (i) -x + 1, -y + 1, z; (ii) x, y - 1, z.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL2012.

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) y Sede Manizales (DIMA) de la Universidad Nacional de Colombia, for financial support of this work

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5327).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Kober, E., Nerkowski, T., Janas, Z. & Jerzykiewicz, L. B. (2012). Dalton Trans. 41. 5188-5192
- Rivera, A., Quiroga, D., Jiménez-Cruz, L., Fejfarová, K. & Dusek, M. (2012). Tetrahedron Lett. 53, 345-348.
- Rivera, A., Quiroga, D., Rios-Motta, J., Carda, J. & Peris, G. (2009). J. Chem. Crystallogr. 39, 827-830.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
- Xu, X., Yao, Y., Zhang, Y. & Shen, Q. (2007). Inorg. Chem. 46, 3743-3751.

supporting information

Acta Cryst. (2013). E69, o1059 [https://doi.org/10.1107/S1600536813015237]

4,4'-Dimethyl-2,2'-{[2,3,3a,4,5,6,7,7a-octahydro-1*H*-benzimidazole-1,3-diyl]bis(methylene)}diphenol

Augusto Rivera, Héctor Jairo Osorio, Mauricio Maldonado, Jaime Ríos-Motta and Michael Bolte

S1. Comment

Chiral 1,3-diazaheterocyclic-bridged bis(phenols) form stable complexes with several metals and are of interest as ligands to metal complexes because they produce asymmetric coordination compounds (Xu *et al.*, 2007; Kober *et al.*, 2012) and therefore may be involved in enantioselective catalysis.

The title compound (I) was synthesized in a one-step reaction between the chiral macrocyclic aminal (2R,7R)-1,8,10,12-tetraazatetracyclo[8.3.11^{8,12}.0^{2,7}]pentadecane and *p*-cresol. Single crystals of were obtained by recrystallization from CHCl₃ solution.

The molecular structure and atom-numbering scheme for (I) are shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen *et al.*, 1987) and are comparable with those reported previously reported racemate (Rivera *et al.*, 2009). The space group, of the title enantiomer, $P2_12_12_1$, differs from that of the racemate which was triclinic, *P-1*. (Rivera *et al.*, 2009).

The crystal structure of (I) shows two intramolecular hydrogen bonds generating rings with graph-set motif S(6) (Bernstein *et al.*, 1995) (Table 1). In the crystal, molecules are linked *via* non-classical intermolecular C—H···O interactions, which stack the molecules along the *b* axis.

S2. Experimental

The title compound was synthesized according to the published procedure (Rivera *et al.*, 2012) by reacting (2R,7R)-1,8,10,12-tetraazatetracyclo [8.3.11^{8,12}.0^{2,7}]pentadecane (1 mmol, $[\alpha]^{20}$ _D -25.1, c = O.6% CH₂Cl₂) and *p*-cresol (1 mmol). After work-up a solid was obtained by slow evaporation from chloroform at room temperature. After standing for two days, crystals suitable for X-ray diffraction were grown from a solution in CHCl₃ obtained in 37% yield, m.p. = 464 K, $[\alpha]^{20}$ _D -54.4, c = O.6 in CHCl₃.

S3. Refinement

The hydroxyl H atom was freely refined. H atoms bound to carbon were refined using a riding model with methyl C—H = 0.98 Å, aromatic C—H = 0.95 Å, secondary C—H = 0.99 Å, and with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H or $1.2U_{eq}(C)$ for aromatic and secondary H.

_reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences

A perspective view of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres with arbitrary radii. Intramolecular hydrogen bonds are drawn as dashed lines.

4,4'-Dimethyl-2,2'-{[2,3,3a,4,5,6,7,7a-octahydro-1H-benzimidazole-1,3-diyl]bis(methylene)}diphenol

Crystal data

$C_{22}H_{20}N_2O_2$
$M_r = 366.49$
Orthorhombic, $P2_12_12$
<i>a</i> = 18.5417 (9) Å
<i>b</i> = 6.0597 (4) Å
<i>c</i> = 8.9415 (5) Å
$V = 1004.64 (10) \text{ Å}^3$
Z = 2
F(000) = 396

Data collection

STOE IPDS II two-circlediffractometer Radiation source: Genix 3D I μ S microfocus Xray source ω scans Absorption correction: multi-scan (X-AREA; Stoe & Cie, 2001) $T_{min} = 0.976, T_{max} = 0.991$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.090$ $D_x = 1.212 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 16515 reflections $\theta = 2.2-27.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 173 KPlate, colourless $0.31 \times 0.27 \times 0.12 \text{ mm}$

12723 measured reflections 2168 independent reflections 2058 reflections with $I > 2\sigma(I)$ $R_{int} = 0.053$ $\theta_{max} = 26.9^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -23 \rightarrow 23$ $k = -7 \rightarrow 7$ $l = -11 \rightarrow 11$

S = 1.042168 reflections 129 parameters 0 restraints Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0482P)^2 + 0.1419P]$ where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} < 0.001$

Special details

 $\begin{aligned} \Delta \rho_{\text{max}} &= 0.14 \text{ e } \text{\AA}^{-3} \\ \Delta \rho_{\text{min}} &= -0.13 \text{ e } \text{\AA}^{-3} \\ \text{Extinction correction: } SHELXL, \\ &\text{Fc}^{*} = \text{kFc}[1 + 0.001 \text{xFc}^{2} \text{\AA}^{3} / \sin(2\theta)]^{-1/4} \\ \text{Extinction coefficient: } 0.075 (11) \end{aligned}$

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.41870 (7)	0.5018 (2)	0.60166 (17)	0.0414 (3)	
H1	0.4384 (19)	0.376 (6)	0.668 (4)	0.097 (11)*	
N1	0.44460 (7)	0.0979 (2)	0.70721 (16)	0.0303 (3)	
C1	0.45928 (9)	0.0063 (3)	0.85614 (19)	0.0340 (4)	
H1A	0.4393	-0.1468	0.8611	0.041*	
C2	0.43253 (11)	0.1352 (4)	0.9905 (2)	0.0477 (5)	
H2A	0.3792	0.1414	0.9901	0.057*	
H2B	0.4513	0.2880	0.9873	0.057*	
C3	0.45917 (12)	0.0182 (5)	1.1318 (2)	0.0596 (7)	
H3A	0.4458	0.1074	1.2204	0.071*	
H3B	0.4347	-0.1264	1.1405	0.071*	
C4	0.5000	0.0000	0.6072 (3)	0.0305 (5)	
H4	0.5217	0.1150	0.5427	0.037*	
C5	0.36990 (9)	0.0576 (3)	0.6571 (2)	0.0332 (4)	
H5A	0.3362	0.1007	0.7378	0.040*	
H5B	0.3634	-0.1021	0.6380	0.040*	
C11	0.35166 (9)	0.1843 (3)	0.5173 (2)	0.0301 (4)	
C12	0.37743 (9)	0.3996 (3)	0.4958 (2)	0.0330 (4)	
C13	0.35991 (10)	0.5134 (3)	0.3660 (2)	0.0389 (4)	
H13	0.3788	0.6571	0.3496	0.047*	
C14	0.31501 (10)	0.4180 (4)	0.2604 (2)	0.0389 (4)	
H14	0.3032	0.4983	0.1724	0.047*	
C15	0.28681 (10)	0.2075 (3)	0.2801 (2)	0.0359 (4)	
C16	0.30625 (9)	0.0935 (3)	0.4097 (2)	0.0320 (4)	
H16	0.2878	-0.0511	0.4249	0.038*	
C17	0.23790 (11)	0.1007 (4)	0.1658 (2)	0.0452 (5)	
H17A	0.2278	0.2060	0.0852	0.068*	
H17B	0.1926	0.0571	0.2138	0.068*	
H17C	0.2617	-0.0300	0.1241	0.068*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0387 (7)	0.0295 (6)	0.0559 (8)	-0.0030 (6)	-0.0083 (6)	-0.0022 (7)
N1	0.0243 (7)	0.0345 (7)	0.0319 (7)	0.0019 (6)	0.0008 (5)	0.0008 (6)
C1	0.0298 (9)	0.0385 (8)	0.0337 (9)	0.0043 (7)	0.0003 (6)	0.0036 (8)
C2	0.0383 (10)	0.0677 (14)	0.0371 (10)	0.0140 (10)	0.0033 (9)	-0.0034 (10)
C3	0.0501 (13)	0.0951 (19)	0.0335 (10)	0.0207 (13)	0.0048 (9)	0.0018 (12)
C4	0.0262 (10)	0.0315 (11)	0.0339 (11)	0.0007 (9)	0.000	0.000
C5	0.0251 (8)	0.0346 (8)	0.0398 (9)	-0.0014 (7)	-0.0005 (7)	0.0043 (7)
C11	0.0238 (7)	0.0296 (8)	0.0369 (9)	0.0024 (6)	0.0013 (7)	0.0006 (7)
C12	0.0274 (8)	0.0301 (8)	0.0414 (9)	0.0012 (7)	0.0003 (7)	-0.0015 (8)
C13	0.0371 (9)	0.0316 (8)	0.0482 (10)	0.0008 (7)	0.0058 (8)	0.0062 (8)
C14	0.0377 (9)	0.0410 (10)	0.0380 (9)	0.0077 (8)	0.0028 (8)	0.0062 (8)
C15	0.0305 (8)	0.0409 (10)	0.0363 (9)	0.0048 (7)	0.0014 (8)	-0.0021 (8)
C16	0.0270 (8)	0.0303 (8)	0.0388 (9)	0.0001 (7)	0.0020 (7)	-0.0013 (7)
C17	0.0427 (10)	0.0546 (11)	0.0384 (10)	0.0024 (9)	-0.0037 (8)	-0.0041 (10)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

01—C12	1.365 (2)	C5—C11	1.505 (2)	
01—H1	1.03 (4)	С5—Н5А	0.9900	
N1—C1	1.468 (2)	С5—Н5В	0.9900	
N1C5	1.476 (2)	C11—C16	1.392 (3)	
N1-C4	1.485 (2)	C11—C12	1.403 (2)	
C1-C1 ⁱ	1.512 (3)	C12—C13	1.389 (3)	
C1—C2	1.516 (3)	C13—C14	1.386 (3)	
C1—H1A	1.0000	C13—H13	0.9500	
С2—С3	1.531 (3)	C14—C15	1.390 (3)	
C2—H2A	0.9900	C14—H14	0.9500	
C2—H2B	0.9900	C15—C16	1.396 (3)	
C3—C3 ⁱ	1.530 (4)	C15—C17	1.512 (3)	
С3—НЗА	0.9900	C16—H16	0.9500	
С3—Н3В	0.9900	C17—H17A	0.9800	
C4—N1 ⁱ	1.485 (2)	C17—H17B	0.9800	
C4—H4	0.9900	С17—Н17С	0.9800	
С12—О1—Н1	105 (2)	N1—C5—H5B	109.2	
C1—N1—C5	112.75 (14)	C11—C5—H5B	109.2	
C1—N1—C4	105.47 (13)	H5A—C5—H5B	107.9	
C5—N1—C4	113.58 (14)	C16—C11—C12	118.61 (17)	
N1-C1-C1 ⁱ	101.79 (11)	C16—C11—C5	120.55 (15)	
N1—C1—C2	117.60 (15)	C12—C11—C5	120.78 (16)	
C1 ⁱ —C1—C2	110.66 (14)	O1—C12—C13	119.01 (16)	
N1—C1—H1A	108.8	O1—C12—C11	121.19 (17)	
C1 ⁱ —C1—H1A	108.8	C13—C12—C11	119.79 (17)	
C2C1H1A	108.8	C14—C13—C12	120.22 (17)	
C1—C2—C3	108.07 (17)	C14—C13—H13	119.9	

C1—C2—H2A	110.1	C12—C13—H13	119.9
C3—C2—H2A	110.1	C13—C14—C15	121.48 (18)
C1—C2—H2B	110.1	C13—C14—H14	119.3
C3—C2—H2B	110.1	C15—C14—H14	119.3
H2A—C2—H2B	108.4	C14—C15—C16	117.54 (18)
C3 ⁱ —C3—C2	112.71 (18)	C14—C15—C17	122.16 (19)
C3 ⁱ —C3—H3A	109.0	C16—C15—C17	120.28 (18)
С2—С3—НЗА	109.0	C11—C16—C15	122.30 (17)
C3 ⁱ —C3—H3B	109.0	C11—C16—H16	118.8
С2—С3—Н3В	109.0	C15—C16—H16	118.8
НЗА—СЗ—НЗВ	107.8	С15—С17—Н17А	109.5
N1 ⁱ —C4—N1	106.00 (19)	С15—С17—Н17В	109.5
N1 ⁱ —C4—H4	110.5	H17A—C17—H17B	109.5
N1—C4—H4	110.5	С15—С17—Н17С	109.5
N1—C5—C11	112.24 (14)	H17A—C17—H17C	109.5
N1—C5—H5A	109.2	H17B—C17—H17C	109.5
С11—С5—Н5А	109.2		
C5— $N1$ — $C1$ — $C1$ ⁱ	160.26 (17)	C16-C11-C12-O1	176.16 (15)
C4— $N1$ — $C1$ — $C1$ ⁱ	35.78 (19)	C5-C11-C12-O1	-1.1 (2)
C5—N1—C1—C2	-78.7 (2)	C16-C11-C12-C13	-2.7 (2)
C4—N1—C1—C2	156.83 (15)	C5-C11-C12-C13	180.00 (15)
N1-C1-C2-C3	-175.55 (19)	O1—C12—C13—C14	-176.61 (17)
$C1^{i}$ — $C1$ — $C2$ — $C3$	-59.2 (2)	C11—C12—C13—C14	2.3 (3)
C1-C2-C3-C3 ⁱ	53.8 (3)	C12-C13-C14-C15	-0.4 (3)
$C1$ — $N1$ — $C4$ — $N1^i$	-14.09 (8)	C13—C14—C15—C16	-0.9 (3)
$C5$ — $N1$ — $C4$ — $N1^i$	-138.05 (15)	C13—C14—C15—C17	-179.83 (18)
C1—N1—C5—C11	170.22 (14)	C12-C11-C16-C15	1.4 (3)
C4—N1—C5—C11	-69.88 (17)	C5-C11-C16-C15	178.62 (16)
N1-C5-C11-C16	144.70 (16)	C14—C15—C16—C11	0.5 (3)
N1-C5-C11-C12	-38.1 (2)	C17—C15—C16—C11	179.38 (17)

Symmetry code: (i) -x+1, -y, z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H1…N1	1.03 (4)	1.73 (4)	2.667 (2)	150 (3)
C4—H4…O1 ⁱⁱ	0.99	2.63	3.3749 (13)	133
C5—H5 <i>B</i> ···O1 ⁱⁱⁱ	0.99	2.63	3.522 (2)	150

Symmetry codes: (ii) –*x*+1, –*y*+1, *z*; (iii) *x*, *y*–1, *z*.