supplementary materials


sj5336 scheme

Acta Cryst. (2013). E69, o1177-o1178    [ doi:10.1107/S1600536813017406 ]

(E)-N'-(4-Methoxybenzylidene)pyridine-3-carbohydrazide dihydrate

J. J. Novina, G. Vasuki, M. Suresh and M. S. A. Padusha

Abstract top

In the title compound, C14H13N3O2·2H2O, the hydrazone molecule adopts an E conformation with respect to the C=N bond. The dihedral angle between the benzene and pyridine rings is 8.55 (10)°. The methylidene-hydrazide [-C(=O)-N-N=C-] fragment is essentially planar, with a maximum deviation of 0.0375 (13) Å. The mean planes of the benzene and pyridine rings make dihedral angles of 2.71 (14) and 11.25 (13)°, respectively, with mean plane of the methylidene-hydrazide fragment. In the crystal, the benzohydrazide and water molecules are linked by N-H...O, O-H...O and O-H...N hydrogen bonds into a three-dimensional network.

Comment top

Hydrazones have attracted much attention for their excellent biological properties, such as antimicrobial, anti-convulsant, analgestic, anti-inflammatory, antiplatelet, antitubercular, anticancer, antitumor (Hai-Yun, 2011), antiviral and vasodilator activities (Parashar et al., 2009). Hydrazones possessing azomethine –NHNCH– groups constitute an important class of compounds for new drug development (Hai-Yun, 2011). Moreover, hydrazones derived from 2-acetylpyridine are known to inhibit the proliferation of tumour cells to a greater extent compared to standard anticancer agents (Havanur et al., 2010). In addition, metal complexes with hydrazones exhibit antimicrobial, DNA-binding and cytotoxic activities. It has also been shown that these metal complexes can be potent inhibitors of cell growth and DNA synthesis (Despaigne et al., 2010; Havanur et al., 2010; Ambwani et al., 2011). Metal complexes with hydrazones also have potential applications as catalysts, luminescent probes and molecular sensors (Seleem et al., 2011; Singh & Raghav, 2011). We report herein the crystal structure of the title compound, a new hydrazone.

The title compound (Fig. 1), C14H13N3O2.2H2O, comprises one benzohydrazide molecule and two water molecules. The hydrazone molecule adopts an E conformation with respect to the CN bond with the torsion angle of -177.41 (16)° (C8—N1—N2—C9). Phenyl and pyridine rings (C2—C7 and N3/C10—C14, respectively) are each planner with a dihedral angle 8.55 (10)° between their mean-planes. The methylidenehydrazide fragment O2/C9/N2/N1/C8 in the title compound is essentially planar with maximum deviation being -0.0375 (13) Å for the N1 atom. The mean-planes of the benzene and pyridine rings make dihedral angles of 2.71 (14)° and 11.25 (13)°, respectively, with mean–plane of the methylidenehydrazide fragment. The C8N1 and C9O2 bond lengths are 1.270 (2) and 1.2199 (18) Å, respectively, which is very close to the values found in related structures (Hu & Liu, 2012; Shi & Li, 2012; Ahmad et al., 2010). The methoxy group is co–planar with the benzene ring to which it is bound with the C1—O1—C2—C3 torsion angle = -0.26 (27)°.

In the crystal packing (Fig. 2), the molecules of benzohydrazide and water are linked by N2—H2N2···O1W, O1W—H2O1···O2W, O2W—H2O2···O2, O1W—H1O1···N3 and O2W—H1O2···N1 hydrogen bonds (Table 1) into a three–dimensional network.

Related literature top

For the biological activity of benzohydrazides, see: Hai-Yun (2011); Havanur et al. (2010); Parashar et al. (2009). For details of the ability of benzohydrazone compounds to inhibit cell growth and DNA synthesis, see: Ambwani et al. (2011); Despaigne et al. (2010); Havanur et al. (2010). For background to the use of benzohydrazides as catalysts, see: Seleem et al. (2011); Singh & Raghav (2011). For related structures, see: Ahmad et al. (2010); Hu & Liu (2012); Shi & Li (2012).

Experimental top

Anisaldehyde (1.2 ml, 0.01 mol) and benzoic acid hydrazide (1.37 g, 0.01 mol) were added to ethanol(10 ml) of and stirred for an hour in the presence of hydrochloric acid to form a white precipitate. The precipitate was washed with sodium bicarbonate solution and filtered and again washed with petroleum ether (40–60%)and dried in air. The compound was recrystallized from absolute ethanol.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93 Å, CH3 = 0.96 Å, N—H = 0.86 Å and O—H = 0.81–0.83 Å with Uiso(H) = 1.5Ueq(CH3) and 1.2Ueq(CH, NH).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the a axis. Hydrogen bonds are shown as dashed lines.
(E)-N'-(4-Methoxybenzylidene)pyridine-3-carbohydrazide dihydrate top
Crystal data top
C14H13N3O2·2H2OF(000) = 616
Mr = 291.31Dx = 1.356 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2772 reflections
a = 7.6534 (6) Åθ = 5.0–49.6°
b = 16.3503 (11) ŵ = 0.10 mm1
c = 11.4887 (6) ÅT = 296 K
β = 96.889 (2)°Block, colorless
V = 1427.26 (17) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3449 independent reflections
Radiation source: fine-focus sealed tube2050 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and φ scanθmax = 28.2°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 610
Tmin = 0.970, Tmax = 0.980k = 2121
11391 measured reflectionsl = 1315
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.0961P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max = 0.001
3449 reflectionsΔρmax = 0.21 e Å3
206 parametersΔρmin = 0.17 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.009 (2)
Crystal data top
C14H13N3O2·2H2OV = 1427.26 (17) Å3
Mr = 291.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.6534 (6) ŵ = 0.10 mm1
b = 16.3503 (11) ÅT = 296 K
c = 11.4887 (6) Å0.30 × 0.25 × 0.20 mm
β = 96.889 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3449 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2050 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.980Rint = 0.028
11391 measured reflectionsθmax = 28.2°
Refinement top
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.155Δρmax = 0.21 e Å3
S = 0.93Δρmin = 0.17 e Å3
3449 reflectionsAbsolute structure: ?
206 parametersAbsolute structure parameter: ?
6 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1W0.21558 (17)0.92875 (9)0.70457 (12)0.0661 (4)
O10.21045 (18)1.39338 (7)0.86316 (12)0.0652 (4)
O2W0.4378 (2)1.01711 (9)1.14079 (13)0.0670 (4)
N10.15479 (18)1.00258 (8)0.89482 (11)0.0459 (4)
N20.09417 (18)0.92297 (7)0.87676 (11)0.0449 (4)
H2N20.00610.91210.82530.054*
N30.1583 (2)0.63790 (8)0.97900 (12)0.0530 (4)
O20.29733 (18)0.87747 (7)1.01980 (11)0.0688 (5)
C10.3384 (3)1.42723 (12)0.9485 (2)0.0717 (6)
H1A0.30711.41581.02530.108*
H1B0.34381.48530.93750.108*
H1C0.45121.40350.94080.108*
C20.1867 (2)1.31049 (10)0.86152 (14)0.0470 (4)
C30.2804 (2)1.25610 (10)0.93809 (15)0.0477 (4)
H30.36711.27530.99520.057*
C40.2445 (2)1.17334 (10)0.92929 (14)0.0460 (4)
H40.30801.13720.98060.055*
C50.1152 (2)1.14332 (9)0.84510 (13)0.0413 (4)
C80.0684 (2)1.05745 (10)0.83445 (14)0.0450 (4)
H80.02781.04210.78180.054*
C90.1777 (2)0.86340 (9)0.94232 (13)0.0422 (4)
C100.1187 (2)0.77765 (9)0.91597 (13)0.0384 (4)
C140.1898 (2)0.71787 (10)0.99233 (13)0.0467 (4)
H140.26500.73451.05770.056*
C130.0525 (2)0.61574 (10)0.88326 (15)0.0520 (5)
H130.03030.56030.87080.062*
C60.0240 (2)1.19971 (10)0.76869 (14)0.0482 (4)
H60.06291.18090.71140.058*
C70.0592 (2)1.28169 (10)0.77585 (15)0.0509 (4)
H70.00221.31780.72340.061*
C120.0253 (2)0.67021 (10)0.80237 (15)0.0519 (5)
H120.09880.65190.73730.062*
C110.0072 (2)0.75257 (9)0.81904 (14)0.0456 (4)
H110.04520.79070.76580.055*
H1O10.266 (2)0.9158 (11)0.6408 (10)0.068*
H2O10.291 (2)0.9418 (13)0.7474 (13)0.068*
H2O20.389 (3)0.9826 (11)1.0949 (17)0.077 (7)*
H1O20.544 (2)1.021 (2)1.134 (3)0.149 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.0546 (9)0.0784 (9)0.0607 (9)0.0029 (7)0.0121 (7)0.0218 (7)
O10.0764 (10)0.0408 (7)0.0760 (9)0.0070 (6)0.0009 (8)0.0042 (6)
O2W0.0648 (10)0.0722 (9)0.0623 (9)0.0155 (8)0.0000 (8)0.0202 (7)
N10.0494 (8)0.0396 (7)0.0464 (8)0.0076 (6)0.0043 (7)0.0017 (6)
N20.0468 (8)0.0403 (7)0.0440 (8)0.0064 (6)0.0088 (6)0.0030 (6)
N30.0636 (10)0.0439 (8)0.0487 (8)0.0001 (7)0.0054 (7)0.0017 (6)
O20.0731 (9)0.0519 (7)0.0702 (9)0.0125 (6)0.0370 (8)0.0024 (6)
C10.0695 (14)0.0482 (10)0.0957 (16)0.0127 (9)0.0025 (12)0.0117 (10)
C20.0523 (10)0.0401 (9)0.0497 (9)0.0011 (7)0.0111 (8)0.0009 (7)
C30.0489 (10)0.0472 (9)0.0450 (9)0.0052 (7)0.0023 (8)0.0042 (7)
C40.0500 (10)0.0418 (9)0.0439 (9)0.0017 (7)0.0030 (8)0.0007 (7)
C50.0427 (9)0.0420 (8)0.0386 (8)0.0005 (7)0.0022 (7)0.0033 (6)
C80.0447 (9)0.0457 (9)0.0420 (9)0.0029 (7)0.0049 (7)0.0037 (7)
C90.0428 (9)0.0436 (9)0.0383 (8)0.0055 (7)0.0026 (7)0.0010 (6)
C100.0380 (8)0.0421 (8)0.0343 (8)0.0016 (7)0.0009 (7)0.0026 (6)
C140.0518 (10)0.0479 (9)0.0375 (9)0.0021 (8)0.0068 (8)0.0020 (7)
C130.0578 (11)0.0413 (9)0.0546 (10)0.0017 (8)0.0021 (9)0.0064 (7)
C60.0478 (10)0.0500 (10)0.0441 (9)0.0022 (8)0.0062 (8)0.0028 (7)
C70.0554 (11)0.0477 (9)0.0480 (9)0.0074 (8)0.0003 (8)0.0046 (7)
C120.0555 (11)0.0484 (9)0.0478 (9)0.0034 (8)0.0100 (8)0.0096 (8)
C110.0486 (10)0.0442 (9)0.0412 (9)0.0013 (7)0.0068 (8)0.0003 (7)
Geometric parameters (Å, º) top
O1W—H1O10.814 (9)C3—H30.9300
O1W—H2O10.828 (9)C4—C51.388 (2)
O1—C21.3672 (19)C4—H40.9300
O1—C11.413 (2)C5—C61.400 (2)
O2W—H2O20.830 (15)C5—C81.450 (2)
O2W—H1O20.828 (17)C8—H80.9300
N1—C81.270 (2)C9—C101.493 (2)
N1—N21.3890 (17)C10—C111.382 (2)
N2—C91.3451 (19)C10—C141.381 (2)
N2—H2N20.8600C14—H140.9300
N3—C141.335 (2)C13—C121.370 (2)
N3—C131.335 (2)C13—H130.9300
O2—C91.2199 (18)C6—C71.368 (2)
C1—H1A0.9600C6—H60.9300
C1—H1B0.9600C7—H70.9300
C1—H1C0.9600C12—C111.379 (2)
C2—C71.383 (2)C12—H120.9300
C2—C31.388 (2)C11—H110.9300
C3—C41.382 (2)
H1O1—O1W—H2O1108.4 (17)N1—C8—H8119.0
C2—O1—C1118.54 (14)C5—C8—H8119.0
H2O2—O2W—H1O2111 (2)O2—C9—N2122.46 (14)
C8—N1—N2115.97 (13)O2—C9—C10120.50 (14)
C9—N2—N1117.85 (12)N2—C9—C10117.04 (13)
C9—N2—H2N2121.1C11—C10—C14117.41 (14)
N1—N2—H2N2121.1C11—C10—C9125.79 (14)
C14—N3—C13116.33 (13)C14—C10—C9116.70 (13)
O1—C1—H1A109.5N3—C14—C10124.64 (14)
O1—C1—H1B109.5N3—C14—H14117.7
H1A—C1—H1B109.5C10—C14—H14117.7
O1—C1—H1C109.5N3—C13—C12123.60 (15)
H1A—C1—H1C109.5N3—C13—H13118.2
H1B—C1—H1C109.5C12—C13—H13118.2
O1—C2—C7115.38 (14)C7—C6—C5121.87 (14)
O1—C2—C3124.65 (14)C7—C6—H6119.1
C7—C2—C3119.97 (14)C5—C6—H6119.1
C4—C3—C2119.85 (14)C6—C7—C2119.58 (15)
C4—C3—H3120.1C6—C7—H7120.2
C2—C3—H3120.1C2—C7—H7120.2
C3—C4—C5121.08 (14)C13—C12—C11118.95 (14)
C3—C4—H4119.5C13—C12—H12120.5
C5—C4—H4119.5C11—C12—H12120.5
C4—C5—C6117.64 (14)C12—C11—C10119.05 (14)
C4—C5—C8123.31 (14)C12—C11—H11120.5
C6—C5—C8119.04 (13)C10—C11—H11120.5
N1—C8—C5122.07 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N2···O1W0.862.082.9013 (17)161
O1W—H1O1···N3i0.81 (1)2.08 (1)2.8697 (18)166 (2)
O1W—H2O1···O2Wii0.83 (1)1.93 (1)2.749 (2)171 (2)
O2W—H1O2···N1iii0.83 (2)2.40 (2)3.209 (2)166 (3)
O2W—H2O2···O20.83 (2)2.01 (2)2.8182 (17)164 (2)
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x, y+2, z+2; (iii) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC14H13N3O2·2H2O
Mr291.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.6534 (6), 16.3503 (11), 11.4887 (6)
β (°) 96.889 (2)
V3)1427.26 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.970, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
11391, 3449, 2050
Rint0.028
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.155, 0.93
No. of reflections3449
No. of parameters206
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.17

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N2···O1W0.862.082.9013 (17)160.5
O1W—H1O1···N3i0.814 (9)2.075 (10)2.8697 (18)165.5 (18)
O1W—H2O1···O2Wii0.828 (9)1.928 (10)2.749 (2)171.3 (19)
O2W—H1O2···N1iii0.828 (17)2.400 (19)3.209 (2)166 (3)
O2W—H2O2···O20.830 (15)2.012 (16)2.8182 (17)164 (2)
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x, y+2, z+2; (iii) x+1, y+2, z+2.
Acknowledgements top

The authors thank the Sophisticated Analytical Instrument Facility, STIC, Cochin University of Science & Technology, Cochin, for the data collection.

references
References top

Ahmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976.

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Ambwani, J., Dikshit, S. N., Tiwari, V. K., Dubey, A. K. & Rahul, A. (2011). Asian J. Chem. Environ. Res. 4, 33–35.

Bruker (2004). APEX2, SAINT and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.

Despaigne, A. A. R., Vieira, L. F., Mendes, I. C., da Costa, F. B., Speziali, N. L. & Beraldo, H. (2010). J. Braz. Chem. Soc. 21, 1247–1257.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Hai-Yun, Z. (2011). Chin. J. Struct. Chem. 30, 724–730.

Havanur, V. C., Badiger, D. S., Ligade, S. G. & Gudasi, K. B. (2010). Pharma Chem. 2, 390–404.

Hu, H.-N. & Liu, S.-Y. (2012). Acta Cryst. E68, o1613.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Parashar, B., Punjabi, P. B., Gupta, G. D. & Sharma, V. K. (2009). Int. J. Chem. Tech. Res. 1, 1022–1025.

Seleem, H. S., El-Inany, G. A., El-Shetary, B. A., Mousa, M. A. & Hanafy, F. I. (2011). Chem. Cent. J. 5, 1–9.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Shi, Z.-F. & Li, J.-M. (2012). Acta Cryst. E68, o1726.

Singh, M. & Raghav, N. (2011). Int. J. Pharm. Pharm. Sci. 3, 26–32.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.