

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,6-Dibromonaphthalen-2-ol methanol monosolvate

Marisa B. Sanders, Tania Furkan, Emily Leonard and Benny C. Chan*

Department of Chemistry, The College of New Jersey, 2000 Pennington Rd, Ewing, NJ 08628, USA

Correspondence e-mail: chan@tcnj.edu

Received 6 May 2013; accepted 12 June 2013

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; R factor = 0.036; wR factor = 0.074; data-to-parameter ratio = 19.5.

The naphthol-containing molecule of the title compound, $C_{10}H_6Br_2O\cdot CH_3OH$, crystallized as a methanol monosolvate and is planar to within 0.069 (1) Å for all non-H atoms. In the crystal, molecules are linked by two pairs of $O-H\cdots O$ hydrogen bonds, involving the methanol molecule, forming dimer-like arrangements. The crystal structure is further stabilized by $\pi-\pi$ stacking [centroid–centroid distance = 3.676 (2) Å] and Br \cdots Br interactions [3.480 (4) and 3.786 (1) Å], forming a three-dimensional structure.

Related literature

For information on applications of 1,6-dibromo-2-napthol, see: Costa *et al.* (2012); Takeuchi *et al.* (2000); Kalra & Kumar (2005). For related structures, see: Rozycka-Sokolowska & Marciniak (2009). For halogen–halogen interactions, see: Zordan & Brammer (2006); Schlueter *et al.* (2012); Desiraju & Parthasarathy (1989).

Experimental

Crystal data

 $\begin{array}{ll} C_{10}H_6Br_2O\cdot CH_4O & c = 22.462 \ (2) \ \mathring{A} \\ M_r = 334.01 & \beta = 92.442 \ (1)^\circ \\ \text{Monoclinic, } P_{1/n} & V = 1118.62 \ (19) \ \mathring{A}^3 \\ a = 3.9971 \ (4) \ \mathring{A} & Z = 4 \\ b = 12.4705 \ (12) \ \mathring{A} & \text{Mo } K\alpha \text{ radiation} \end{array}$

 $0.26 \times 0.11 \times 0.01 \text{ mm}$

12658 measured reflections 2690 independent reflections 2082 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.057$

 $\mu = 7.22 \text{ mm}^{-1}$ T = 100 K

Data collection

Bruker APEXII CCD	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Bruker, 2011)	
$T_{\rm min} = 0.521, \ T_{\rm max} = 0.746$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ 138 parameters $wR(F^2) = 0.074$ H-atom parameters constrainedS = 1.02 $\Delta \rho_{max} = 1.31 \text{ e } \text{\AA}^{-3}$ 2690 reflections $\Delta \rho_{min} = -0.60 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1\cdots O2^{i}$	0.84	1.80	2.632 (4)	171
$O2-H2\cdots O1^{ii}$	0.84	2.01	2.809 (4)	159

Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y + 1, -z + 2.

Data collection: *APEX2* (Bruker, 2011); cell refinement: *SAINT* (Bruker, 2011); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *CrystalMaker* (CrystalMaker Software, 2009); software used to prepare material for publication: *enCIFer* (Allen *et al.*, 2004).

The authors gratefully acknowledge The College of New Jersey's School of Science for research funding and the National Science Foundation for major research instrumentation grant (NSF-0922931) for diffractometer acquisition.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2599).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Costa, B., Irvine, M., Fang, G., Eaves, R., Mayo-Martin, M., Laube, B., Jane, D. & Monaghan, D. (2012). *Neuropharmacology*, **62**, 1730–1736.
- CrystalMaker Software (2009). CrystalMaker for Windows. CrystalMaker Software Ltd, Oxford, England.
- Desiraju, G. & Parthasarathy, R. (1989). J. Am. Chem. Soc. 111, 8725-8726.
- Kalra, B. & Kumar, A. (2005). US Patent Appl. Publ. 14.

Rozycka-Sokolowska, E. & Marciniak, B. (2009). Acta Cryst. C65, o207-o210.

- Schlueter, J., Park, H., Halder, G., Armand, W., Dunmars, C., Chapman, K., Manson, J., Singleton, J., McDonald, R., Plonczak, A., Kang, J., Lee, C., Whangbo, M., Lancaster, T., Steele, A., Franke, I., Wright, J., Blundell, S., Pratt, F., deGeorge, J., Turnbull, M. & Landee, C. (2012). *Inorg. Chem.* 51, 2121–2129.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Takeuchi, Y., Shibata, T. & Shirakami, T. (2000). Jpn. Kokai Tokkyo Koho, 9, 99–105.
- Zordan, F. & Brammer, L. (2006). Cryst. Growth Des. 6, 1374-1379.

supporting information

Acta Cryst. (2013). E69, o1149 [https://doi.org/10.1107/S1600536813016371]

1,6-Dibromonaphthalen-2-ol methanol monosolvate

Marisa B. Sanders, Tania Furkan, Emily Leonard and Benny C. Chan

S1. Comment

Naphthol-containing compounds have gained popularity recently in the pharmaceutical industry as they have potential applications in the synthesis of antipsychotic medications (Costa *et al.*, 2012). The title compound has unique applications as a peroxidase enhancer in peroxidase-catalyzed oxidation reactions (Takeuchi *et al.*, 2000). It is also used to stabilize the two-component system for chemiluminescent assay in immunodiagostics (Kalra & Kumar, 2005).

The molecule of the title compound is planar to within 0.069 (1) Å for all non-H atoms (Fig. 1).

In the crystal, molecules are linked by two pairs of O—H…O hydrogen bonds, involving the methanol molecule, forming dimer-like arrangements (Table 1 and Fig. 2).

The crystal network is further stabilized by π stacking of the naphthol rings with a $Cg1\cdots Cg2^{i}$ centroid-centroid distance of 3.676 (2) Å [Cg1 and Cg2 are the centroids of rings C1—C4/C7/C8 and C3—C6/C9/C10, respectively; symmetry code:(i) x - 1, y, z] (see Fig. 2). The crystal structure is also composed of a tetramer of Br…Br contacts, which measure 3.480 (1) Å [Br1…Br1ⁱⁱ; symmetry code: (ii) -x, -y + 1, -z + 1] and 3.786 (1) Å [Br2…Br1ⁱⁱⁱ; symmetry code: (iii) -x + 1/2, y + 1/2, -z + 3/2]. These contacts are within the normal range of Br…Br interactions, which are typically 3.05 Å to 3.80 Å (Zordan & Brammer, 2006; Schlueter *et al.*, 2012; Desiraju & Parthasarathy, 1989).

S2. Experimental

Approximately 100 mg of 1,6-dibromo-2-napthol (Sigma-Aldrich) was dissolved in a 2 ml 50% methanol: 50% hexanes solution. On slow evaporation over the course of two weeks colourless plate-like crystals were obtained. The crystals decomposed rapidly when removed from the mother liquor.

S3. Refinement

The OH and C-bound H atoms were included in calculate positions and treated as riding atoms: O—H = 0.84 Å, C—H = 0.95 and 0.98 Å for CH and CH₃ H atoms, respectively, with $U_{iso}(H) = 1.5U_{eq}(O,C-\text{methyl})$ and $= 1.2U_{eq}(C)$ for other H atoms. A residual density peak of 1.31 e/Å³ was located near atom C10. Twinning was not found and no disorder could be modeled.

Figure 1

The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intermolecular O—H···O hydrogen bond is shown as a dashed line.

Figure 2

A view along the *a* axis of the crystal packing of the title compound. The tetramer of Br…Br contacts, the π stacking of the naphthol rings, and the O—H…O hydrogen bonds (Table 1) are show as green, blue and black dashed lines, respectively.

1,6-Dibromonaphthalen-2-ol methanol monosolvate

Crystal data

C₁₀H₆Br₂O·CH₄O $M_r = 334.01$ Monoclinic, $P2_1/n$ Hall symbol: P 2yn a = 3.9971 (4) Å b = 12.4705 (12) Å c = 22.462 (2) Å $\beta = 92.442$ (1)° V = 1118.62 (19) Å³ Z = 4 F(000) = 648 $D_x = 1.983 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 125 reflections $\theta = 5.5-28.9^{\circ}$ $\mu = 7.22 \text{ mm}^{-1}$ T = 100 KPlate, colourless $0.26 \times 0.11 \times 0.01 \text{ mm}$ Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.3333 pixels mm ⁻¹ ω and φ scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2011) $T_{\min} = 0.521, T_{\max} = 0.746$	12658 measured reflections 2690 independent reflections 2082 reflections with $I > 2\sigma(I)$ $R_{int} = 0.057$ $\theta_{max} = 28.5^{\circ}, \ \theta_{min} = 1.8^{\circ}$ $h = -5 \rightarrow 5$ $k = -16 \rightarrow 15$ $l = -29 \rightarrow 29$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.074$ S = 1.02 2690 reflections 138 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0264P)^2 + 1.7105P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 1.31 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.60 \text{ e } \text{Å}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Br1	0.11971 (11)	0.48530 (3)	0.57493 (2)	0.0238 (1)
Br2	0.46378 (10)	0.69738 (3)	0.87432 (2)	0.0191 (1)
01	0.8338 (7)	0.50830 (19)	0.92461 (11)	0.0218 (9)
C1	0.2711 (9)	0.5134 (3)	0.65501 (16)	0.0160 (11)
C2	0.4589 (9)	0.4385 (3)	0.68511 (17)	0.0181 (11)
C3	0.5579 (9)	0.4567 (3)	0.74594 (17)	0.0154 (11)
C4	0.4629 (9)	0.5538 (3)	0.77388 (16)	0.0158 (10)
C5	0.5664 (9)	0.5675 (3)	0.83471 (17)	0.0155 (10)
C6	0.7448 (9)	0.4917 (3)	0.86645 (17)	0.0176 (11)
C7	0.1771 (9)	0.6095 (3)	0.68189 (17)	0.0185 (11)
C8	0.2723 (9)	0.6286 (3)	0.74024 (17)	0.0178 (11)
С9	0.7470 (9)	0.3789 (3)	0.77869 (17)	0.0175 (11)
C10	0.8383 (9)	0.3942 (3)	0.83702 (17)	0.0197 (11)
O2	0.1551 (8)	0.3491 (2)	0.97853 (13)	0.0287 (9)
C11	-0.0041 (11)	0.2471 (3)	0.98332 (19)	0.0286 (14)
H1	0.94170	0.45510	0.93800	0.0330*
H2A	0.52360	0.37460	0.66570	0.0220*

supporting information

H7	0.04810	0.66100	0.65980	0.0220*	
H8	0.20790	0.69390	0.75830	0.0210*	
H9	0.81130	0.31480	0.75950	0.0210*	
H10	0.96350	0.34080	0.85830	0.0240*	
H2	0.17580	0.37740	1.01240	0.0430*	
H11A	0.11630	0.20400	1.01380	0.0430*	
H11B	-0.00170	0.20990	0.94490	0.0430*	
H11C	-0.23620	0.25730	0.99460	0.0430*	

Alomic displacement parameters (A)	c displacement para	meters (Ų)
------------------------------------	---------------------	------------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0299 (2)	0.0256 (2)	0.0156 (2)	-0.0058 (2)	-0.0031 (2)	0.0001 (2)
Br2	0.0230 (2)	0.0152 (2)	0.0191 (2)	0.0037 (2)	-0.0005 (2)	-0.0024 (2)
01	0.0330 (17)	0.0166 (13)	0.0152 (14)	0.0041 (11)	-0.0052 (12)	0.0022 (11)
C1	0.0176 (19)	0.0182 (18)	0.0122 (18)	-0.0078 (15)	0.0007 (15)	-0.0009 (14)
C2	0.019 (2)	0.0136 (17)	0.022 (2)	-0.0052 (15)	0.0031 (16)	-0.0035 (15)
C3	0.0129 (18)	0.0165 (17)	0.017 (2)	-0.0035 (14)	0.0041 (15)	0.0011 (14)
C4	0.0148 (18)	0.0159 (17)	0.0168 (19)	-0.0043 (14)	0.0028 (15)	-0.0015 (15)
C5	0.0137 (18)	0.0121 (16)	0.021 (2)	0.0005 (14)	0.0032 (15)	-0.0023 (14)
C6	0.0181 (19)	0.0160 (17)	0.0187 (19)	-0.0041 (15)	-0.0001 (15)	0.0011 (15)
C7	0.0165 (19)	0.0158 (18)	0.023 (2)	-0.0040 (15)	0.0002 (16)	0.0050 (15)
C8	0.018 (2)	0.0156 (17)	0.020 (2)	-0.0036 (14)	0.0039 (16)	-0.0027 (15)
С9	0.0171 (19)	0.0135 (17)	0.022 (2)	0.0002 (14)	0.0029 (16)	-0.0008 (15)
C10	0.0159 (19)	0.024 (2)	0.019 (2)	-0.0074 (15)	-0.0001 (16)	-0.0015 (16)
O2	0.0408 (18)	0.0207 (14)	0.0239 (16)	0.0050 (13)	-0.0063 (14)	-0.0016 (12)
C11	0.034 (3)	0.025 (2)	0.027 (2)	0.0026 (18)	0.0030 (19)	0.0009 (18)

Geometric parameters (Å, °)

Br1—C1	1.906 (4)	C5—C6	1.366 (5)	
Br2—C5	1.901 (4)	C6—C10	1.441 (5)	
O1—C6	1.355 (5)	C7—C8	1.370 (5)	
01—H1	0.8400	C9—C10	1.359 (5)	
O2—C11	1.428 (5)	C2—H2A	0.9500	
O2—H2	0.8400	C7—H7	0.9500	
C1—C2	1.360 (5)	C8—H8	0.9500	
C1—C7	1.400 (5)	С9—Н9	0.9500	
С2—С3	1.424 (5)	C10—H10	0.9500	
С3—С9	1.417 (5)	C11—H11A	0.9800	
С3—С4	1.423 (5)	C11—H11B	0.9800	
C4—C5	1.421 (5)	C11—H11C	0.9800	
C4—C8	1.404 (5)			
С6—О1—Н1	110.00	C4—C8—C7	121.4 (3)	
С11—О2—Н2	109.00	C3—C9—C10	121.3 (3)	
Br1—C1—C7	119.0 (3)	C6—C10—C9	119.8 (3)	
Br1—C1—C2	119.3 (3)	C3—C2—H2A	120.00	

C2—C1—C7	121.7 (3)	C1—C2—H2A	120.00
C1—C2—C3	119.5 (3)	С1—С7—Н7	120.00
C2—C3—C4	119.4 (3)	С8—С7—Н7	120.00
C2—C3—C9	120.6 (3)	С7—С8—Н8	119.00
C4—C3—C9	120.0 (3)	C4—C8—H8	119.00
C3—C4—C8	118.5 (3)	С3—С9—Н9	119.00
C3—C4—C5	117.0 (3)	С10—С9—Н9	119.00
C5—C4—C8	124.5 (3)	C6—C10—H10	120.00
Br2—C5—C6	117.6 (3)	C9—C10—H10	120.00
C4—C5—C6	122.9 (3)	O2—C11—H11A	109.00
Br2—C5—C4	119.5 (3)	O2—C11—H11B	110.00
O1—C6—C10	120.6 (3)	O2—C11—H11C	109.00
C5—C6—C10	119.0 (3)	H11A—C11—H11B	109.00
O1—C6—C5	120.5 (3)	H11A-C11-H11C	109.00
C1—C7—C8	119.5 (3)	H11B—C11—H11C	110.00
Br1—C1—C2—C3	-176.7 (3)	C3—C4—C5—C6	-1.0 (5)
C7—C1—C2—C3	1.3 (6)	C8—C4—C5—Br2	-3.1 (5)
Br1-C1-C7-C8	177.2 (3)	C8—C4—C5—C6	178.3 (4)
C2-C1-C7-C8	-0.8 (6)	C3—C4—C8—C7	0.2 (5)
C1—C2—C3—C4	-1.0 (5)	C5—C4—C8—C7	-179.1 (4)
C1—C2—C3—C9	178.6 (3)	Br2—C5—C6—O1	2.1 (5)
C2—C3—C4—C5	179.6 (3)	Br2-C5-C6-C10	-177.5 (3)
C2—C3—C4—C8	0.2 (5)	C4C5C6O1	-179.2 (3)
C9—C3—C4—C5	0.1 (5)	C4-C5-C6-C10	1.2 (6)
C9—C3—C4—C8	-179.3 (3)	O1—C6—C10—C9	-180.0 (3)
C2—C3—C9—C10	-178.8 (4)	C5—C6—C10—C9	-0.3 (5)
C4—C3—C9—C10	0.7 (6)	C1—C7—C8—C4	0.0 (6)
C3—C4—C5—Br2	177.6 (3)	C3—C9—C10—C6	-0.6 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
01—H1…O2 ⁱ	0.84	1.80	2.632 (4)	171
O2—H2···O1 ⁱⁱ	0.84	2.01	2.809 (4)	159

Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+2.