supplementary materials


su2599 scheme

Acta Cryst. (2013). E69, o1149    [ doi:10.1107/S1600536813016371 ]

1,6-Dibromonaphthalen-2-ol methanol monosolvate

M. B. Sanders, T. Furkan, E. Leonard and B. C. Chan

Abstract top

The naphthol-containing molecule of the title compound, C10H6Br2O·CH3OH, crystallized as a methanol monosolvate and is planar to within 0.069 (1) Å for all non-H atoms. In the crystal, molecules are linked by two pairs of O-H...O hydrogen bonds, involving the methanol molecule, forming dimer-like arrangements. The crystal structure is further stabilized by [pi]-[pi] stacking [centroid-centroid distance = 3.676 (2) Å] and Br...Br interactions [3.480 (4) and 3.786 (1) Å], forming a three-dimensional structure.

Comment top

Naphthol-containing compounds have gained popularity recently in the pharmaceutical industry as they have potential applications in the synthesis of antipsychotic medications (Costa et al., 2012). The title compound has unique applications as a peroxidase enhancer in peroxidase-catalyzed oxidation reactions (Takeuchi et al., 2000). It is also used to stabilize the two-component system for chemiluminescent assay in immunodiagostics (Kalra & Kumar, 2005).

The molecule of the title compound is planar to within 0.069 (1) Å for all non-H atoms (Fig. 1).

In the crystal, molecules are linked by two pairs of O—H···O hydrogen bonds, involving the methanol molecule, forming dimer-like arrangements (Table 1 and Fig. 2).

The crystal network is further stabilized by π stacking of the naphthol rings with a Cg1···Cg2i centroid-centroid distance of 3.676 (2) Å [Cg1 and Cg2 are the centroids of rings C1—C4/C7/C8 and C3—C6/C9/C10, respectively; symmetry code:(i) x - 1, y, z] (see Fig. 2). The crystal structure is also composed of a tetramer of Br···Br contacts, which measure 3.480 (1) Å [Br1···Br1ii; symmetry code: (ii) -x, -y + 1, -z + 1] and 3.786 (1) Å [Br2···Br1iii; symmetry code: (iii) -x + 1/2, y + 1/2, -z + 3/2]. These contacts are within the normal range of Br···Br interactions, which are typically 3.05 Å to 3.80 Å (Zordan & Brammer, 2006; Schlueter et al., 2012; Desiraju & Parthasarathy, 1989).

Related literature top

For information on applications of 1,6-dibromo-2-napthol, see: Costa et al. (2012); Takeuchi et al. (2000); Kalra & Kumar (2005). For related structures, see: Rozycka-Sokolowska & Marciniak (2009). For halogen–halogen interactions, see: Zordan & Brammer (2006); Schlueter et al. (2012); Desiraju & Parthasarathy (1989).

Experimental top

Approximately 100 mg of 1,6-dibromo-2-napthol (Sigma-Aldrich) was dissolved in a 2 ml 50% methanol: 50% hexanes solution. On slow evaporation over the course of two weeks colourless plate-like crystals were obtained. The crystals decomposed rapidly when removed from the mother liquor.

Refinement top

The OH and C-bound H atoms were included in calculate positions and treated as riding atoms: O—H = 0.84 Å, C—H = 0.95 and 0.98 Å for CH and CH3 H atoms, respectively, with Uiso(H) = 1.5Ueq(O,C-methyl) and = 1.2Ueq(C) for other H atoms. A residual density peak of 1.31 e/Å3 was located near atom C10. Twinning was not found and no disorder could be modeled.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (CrystalMaker Software, 2009); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intermolecular O—H···O hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. The tetramer of Br···Br contacts, the π stacking of the naphthol rings, and the O—H···O hydrogen bonds (Table 1) are show as green, blue and black dashed lines, respectively.
1,6-Dibromonaphthalen-2-ol methanol monosolvate top
Crystal data top
C10H6Br2O·CH4OF(000) = 648
Mr = 334.01Dx = 1.983 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ynCell parameters from 125 reflections
a = 3.9971 (4) Åθ = 5.5–28.9°
b = 12.4705 (12) ŵ = 7.22 mm1
c = 22.462 (2) ÅT = 100 K
β = 92.442 (1)°Plate, colourless
V = 1118.62 (19) Å30.26 × 0.11 × 0.01 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2690 independent reflections
Radiation source: fine-focus sealed tube2082 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 8.3333 pixels mm-1θmax = 28.5°, θmin = 1.8°
ω and φ scansh = 55
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
k = 1615
Tmin = 0.521, Tmax = 0.746l = 2929
12658 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0264P)2 + 1.7105P]
where P = (Fo2 + 2Fc2)/3
2690 reflections(Δ/σ)max = 0.002
138 parametersΔρmax = 1.31 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
C10H6Br2O·CH4OV = 1118.62 (19) Å3
Mr = 334.01Z = 4
Monoclinic, P21/nMo Kα radiation
a = 3.9971 (4) ŵ = 7.22 mm1
b = 12.4705 (12) ÅT = 100 K
c = 22.462 (2) Å0.26 × 0.11 × 0.01 mm
β = 92.442 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2690 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
2082 reflections with I > 2σ(I)
Tmin = 0.521, Tmax = 0.746Rint = 0.057
12658 measured reflectionsθmax = 28.5°
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.074Δρmax = 1.31 e Å3
S = 1.02Δρmin = 0.60 e Å3
2690 reflectionsAbsolute structure: ?
138 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.11971 (11)0.48530 (3)0.57493 (2)0.0238 (1)
Br20.46378 (10)0.69738 (3)0.87432 (2)0.0191 (1)
O10.8338 (7)0.50830 (19)0.92461 (11)0.0218 (9)
C10.2711 (9)0.5134 (3)0.65501 (16)0.0160 (11)
C20.4589 (9)0.4385 (3)0.68511 (17)0.0181 (11)
C30.5579 (9)0.4567 (3)0.74594 (17)0.0154 (11)
C40.4629 (9)0.5538 (3)0.77388 (16)0.0158 (10)
C50.5664 (9)0.5675 (3)0.83471 (17)0.0155 (10)
C60.7448 (9)0.4917 (3)0.86645 (17)0.0176 (11)
C70.1771 (9)0.6095 (3)0.68189 (17)0.0185 (11)
C80.2723 (9)0.6286 (3)0.74024 (17)0.0178 (11)
C90.7470 (9)0.3789 (3)0.77869 (17)0.0175 (11)
C100.8383 (9)0.3942 (3)0.83702 (17)0.0197 (11)
O20.1551 (8)0.3491 (2)0.97853 (13)0.0287 (9)
C110.0041 (11)0.2471 (3)0.98332 (19)0.0286 (14)
H10.941700.455100.938000.0330*
H2A0.523600.374600.665700.0220*
H70.048100.661000.659800.0220*
H80.207900.693900.758300.0210*
H90.811300.314800.759500.0210*
H100.963500.340800.858300.0240*
H20.175800.377401.012400.0430*
H11A0.116300.204001.013800.0430*
H11B0.001700.209900.944900.0430*
H11C0.236200.257300.994600.0430*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0299 (2)0.0256 (2)0.0156 (2)0.0058 (2)0.0031 (2)0.0001 (2)
Br20.0230 (2)0.0152 (2)0.0191 (2)0.0037 (2)0.0005 (2)0.0024 (2)
O10.0330 (17)0.0166 (13)0.0152 (14)0.0041 (11)0.0052 (12)0.0022 (11)
C10.0176 (19)0.0182 (18)0.0122 (18)0.0078 (15)0.0007 (15)0.0009 (14)
C20.019 (2)0.0136 (17)0.022 (2)0.0052 (15)0.0031 (16)0.0035 (15)
C30.0129 (18)0.0165 (17)0.017 (2)0.0035 (14)0.0041 (15)0.0011 (14)
C40.0148 (18)0.0159 (17)0.0168 (19)0.0043 (14)0.0028 (15)0.0015 (15)
C50.0137 (18)0.0121 (16)0.021 (2)0.0005 (14)0.0032 (15)0.0023 (14)
C60.0181 (19)0.0160 (17)0.0187 (19)0.0041 (15)0.0001 (15)0.0011 (15)
C70.0165 (19)0.0158 (18)0.023 (2)0.0040 (15)0.0002 (16)0.0050 (15)
C80.018 (2)0.0156 (17)0.020 (2)0.0036 (14)0.0039 (16)0.0027 (15)
C90.0171 (19)0.0135 (17)0.022 (2)0.0002 (14)0.0029 (16)0.0008 (15)
C100.0159 (19)0.024 (2)0.019 (2)0.0074 (15)0.0001 (16)0.0015 (16)
O20.0408 (18)0.0207 (14)0.0239 (16)0.0050 (13)0.0063 (14)0.0016 (12)
C110.034 (3)0.025 (2)0.027 (2)0.0026 (18)0.0030 (19)0.0009 (18)
Geometric parameters (Å, º) top
Br1—C11.906 (4)C5—C61.366 (5)
Br2—C51.901 (4)C6—C101.441 (5)
O1—C61.355 (5)C7—C81.370 (5)
O1—H10.8400C9—C101.359 (5)
O2—C111.428 (5)C2—H2A0.9500
O2—H20.8400C7—H70.9500
C1—C21.360 (5)C8—H80.9500
C1—C71.400 (5)C9—H90.9500
C2—C31.424 (5)C10—H100.9500
C3—C91.417 (5)C11—H11A0.9800
C3—C41.423 (5)C11—H11B0.9800
C4—C51.421 (5)C11—H11C0.9800
C4—C81.404 (5)
C6—O1—H1110.00C4—C8—C7121.4 (3)
C11—O2—H2109.00C3—C9—C10121.3 (3)
Br1—C1—C7119.0 (3)C6—C10—C9119.8 (3)
Br1—C1—C2119.3 (3)C3—C2—H2A120.00
C2—C1—C7121.7 (3)C1—C2—H2A120.00
C1—C2—C3119.5 (3)C1—C7—H7120.00
C2—C3—C4119.4 (3)C8—C7—H7120.00
C2—C3—C9120.6 (3)C7—C8—H8119.00
C4—C3—C9120.0 (3)C4—C8—H8119.00
C3—C4—C8118.5 (3)C3—C9—H9119.00
C3—C4—C5117.0 (3)C10—C9—H9119.00
C5—C4—C8124.5 (3)C6—C10—H10120.00
Br2—C5—C6117.6 (3)C9—C10—H10120.00
C4—C5—C6122.9 (3)O2—C11—H11A109.00
Br2—C5—C4119.5 (3)O2—C11—H11B110.00
O1—C6—C10120.6 (3)O2—C11—H11C109.00
C5—C6—C10119.0 (3)H11A—C11—H11B109.00
O1—C6—C5120.5 (3)H11A—C11—H11C109.00
C1—C7—C8119.5 (3)H11B—C11—H11C110.00
Br1—C1—C2—C3176.7 (3)C3—C4—C5—C61.0 (5)
C7—C1—C2—C31.3 (6)C8—C4—C5—Br23.1 (5)
Br1—C1—C7—C8177.2 (3)C8—C4—C5—C6178.3 (4)
C2—C1—C7—C80.8 (6)C3—C4—C8—C70.2 (5)
C1—C2—C3—C41.0 (5)C5—C4—C8—C7179.1 (4)
C1—C2—C3—C9178.6 (3)Br2—C5—C6—O12.1 (5)
C2—C3—C4—C5179.6 (3)Br2—C5—C6—C10177.5 (3)
C2—C3—C4—C80.2 (5)C4—C5—C6—O1179.2 (3)
C9—C3—C4—C50.1 (5)C4—C5—C6—C101.2 (6)
C9—C3—C4—C8179.3 (3)O1—C6—C10—C9180.0 (3)
C2—C3—C9—C10178.8 (4)C5—C6—C10—C90.3 (5)
C4—C3—C9—C100.7 (6)C1—C7—C8—C40.0 (6)
C3—C4—C5—Br2177.6 (3)C3—C9—C10—C60.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.802.632 (4)171
O2—H2···O1ii0.842.012.809 (4)159
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC10H6Br2O·CH4O
Mr334.01
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)3.9971 (4), 12.4705 (12), 22.462 (2)
β (°) 92.442 (1)
V3)1118.62 (19)
Z4
Radiation typeMo Kα
µ (mm1)7.22
Crystal size (mm)0.26 × 0.11 × 0.01
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2011)
Tmin, Tmax0.521, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
12658, 2690, 2082
Rint0.057
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.074, 1.02
No. of reflections2690
No. of parameters138
No. of restraints0
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.31, 0.60

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (CrystalMaker Software, 2009), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.802.632 (4)171
O2—H2···O1ii0.842.012.809 (4)159
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+2.
Acknowledgements top

The authors gratefully acknowledge The College of New Jersey's School of Science for research funding and the National Science Foundation for major research instrumentation grant (NSF-0922931) for diffractometer acquisition.

references
References top

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.

Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Costa, B., Irvine, M., Fang, G., Eaves, R., Mayo-Martin, M., Laube, B., Jane, D. & Monaghan, D. (2012). Neuropharmacology, 62, 1730–1736.

CrystalMaker Software (2009). CrystalMaker for Windows. CrystalMaker Software Ltd, Oxford, England.

Desiraju, G. & Parthasarathy, R. (1989). J. Am. Chem. Soc. 111, 8725–8726.

Kalra, B. & Kumar, A. (2005). US Patent Appl. Publ. 14.

Rozycka-Sokolowska, E. & Marciniak, B. (2009). Acta Cryst. C65, o207–o210.

Schlueter, J., Park, H., Halder, G., Armand, W., Dunmars, C., Chapman, K., Manson, J., Singleton, J., McDonald, R., Plonczak, A., Kang, J., Lee, C., Whangbo, M., Lancaster, T., Steele, A., Franke, I., Wright, J., Blundell, S., Pratt, F., deGeorge, J., Turnbull, M. & Landee, C. (2012). Inorg. Chem. 51, 2121–2129.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Takeuchi, Y., Shibata, T. & Shirakami, T. (2000). Jpn. Kokai Tokkyo Koho, 9, 99–105.

Zordan, F. & Brammer, L. (2006). Cryst. Growth Des. 6, 1374–1379.