supplementary materials


su2613 scheme

Acta Cryst. (2013). E69, m405    [ doi:10.1107/S1600536813016681 ]

Bis{1-[(E)-(2-chlorophenyl)diazenyl]naphthalen-2-olato}copper(II)

M. A. Benaouida, A. Benosmane, H. Bouguerria, S. E. Bouaoud and H. Merazig

Abstract top

The CuII atom in the title compound, [Cu(C16H10ClN2O)2], is located on an inversion center and is tetracoordinated by two N and two O atoms from two bidentate 1-[(E)-(2-chlorophenyl)diazenyl]naphthalen-2-olate ligands, forming a square-planar complex. In the crystal, molecules are linked via weak C-H...O and C-H...Cl hydrogen bonds, forming chains propagating along [010]. There are also [pi]-[pi] interactions present involving adjacent naphthalene rings [centroid-centroid distance = 3.661 (13) Å].

Comment top

Metal-complex dno's are coordination compounds in which a metal ion is linked to one or more ligands containing one or more electron-pair donors. Ligands with one and more donor groups are called mono-, di-, trifunctional ligands, etc. Coordination of two or more of the donor groups of such ligands to the same metal atom leads to di-, tri-, or tetradentate chelation, etc.; other names for these ligands are thus chelating agents or chelators. The metal complexes of these ligands are called chelates. The metals in metal-complex dno's are predominantly chromium and copper, and to a lesser extent cobalt, iron, and nickel. The ligand (E)-1-(o-tolyldiazenyl)naphthalen-2-ol, has been used previously to form complexes with Cu(OAc)2.H2O (Tai et al., 2010) and Pd(OAc)2 (Lin et al., 2010). Herein, we report of the crystal structure of a new copper complex of a similar ligand.

The title CuII complex (Fig. 1) contains two six-membered rings coordinated from two N,O-bidentate phenylazo-naphtholate ligands. It was found that the asymmetric unit contains one half molecule, the Cu atom lying on a centre of inversion. The Cu atom is tetra-coordinated with a normal square planar environment in which two N atoms and two O atoms are coplanar. The two N atoms and two O atoms around Cu atom are trans to each other with an O1—Cu1—N2 bond angle of 87.48 (8)° and O1—Cu1—N2i angle of 92.52 (8)°; symmetry code: (i) (i) -x+2, -y, -z+1. The Cu1-O1 and Cu1-N2 bond distances are 1.8975 (17) Å and 1.961 (2) Å, respectively. The Cu1···Cl1 distances are 3.1525 (7) Å.

In the crystal, molecules are linked via weak C—H···O and C—H···Cl hydrogen bonds (Table 1) which form a one-dimensional chain running parallel to [010], as shown in Fig. 2. There are also π-π interactions present involving adjacent naphthalene rings with Cg1···Cg1i = 3.661 (13) Å [Cg1 is the centroid of ring C7—C16; symmetry code: (i) x, y + 1, z].

Related literature top

For general background to azo compounds and their use in dyes, pigments and advanced materials, see: Lee et al. (2004); Oueslati et al. (2004). For related structures, see: Tai et al. (2010); Lin et al. (2010).

Experimental top

A mixture of (E)-1-((2-chlorophenyl)diazenyl)naphthalen-2-ol (0.14 g, 0.5 mmol) and Cu(OAc)2.H2O (0.025 g, 0.25 mmol) was stirred at 293 K in methanol (10 ml) for 12 h. The mixture was filtered and set aside to crystallize at ambient temperature for three days, giving small block-like black crystals.

Refinement top

The C-bound H atoms were included in calculated positions and treated as riding atoms: C-H = 0.93 Å with Uiso(H) = 1.2Ueq(C). Despite a µ value = 1.08 mm-1 an absorption correction was not applied in view of the very small size of the crystal [0.01 × 0.01 × 0.01 mm].

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (i) -x+2, -y, -z+1]
[Figure 2] Fig. 2. Partial view along the b axis of the crystal packing of the title compound, showing the hydrogen bonds as dashed lines (see Table 1 for details).
Bis{1-[(E)-(2-chlorophenyl)diazenyl]naphthalen-2-olato}copper(II) top
Crystal data top
[Cu(C16H10ClN2O)2]Z = 2
Mr = 626.99F(000) = 638
Monoclinic, P21/cLeast Squares Treatment of 25 SET4 setting angles.
Hall symbol: -P 2ybcDx = 1.595 Mg m3
a = 10.2218 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.8348 (3) ŵ = 1.08 mm1
c = 17.5678 (6) ÅT = 273 K
β = 111.941 (2)°Block, black
V = 1305.03 (9) Å30.01 × 0.01 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
1979 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.030
Graphite monochromatorθmax = 25.1°, θmin = 2.6°
phi and ω scansh = 1112
7327 measured reflectionsk = 99
2299 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.9147P]
where P = (Fo2 + 2Fc2)/3
2299 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Cu(C16H10ClN2O)2]V = 1305.03 (9) Å3
Mr = 626.99Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.2218 (4) ŵ = 1.08 mm1
b = 7.8348 (3) ÅT = 273 K
c = 17.5678 (6) Å0.01 × 0.01 × 0.01 mm
β = 111.941 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1979 reflections with I > 2σ(I)
7327 measured reflectionsRint = 0.030
2299 independent reflectionsθmax = 25.1°
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.082Δρmax = 0.48 e Å3
S = 1.04Δρmin = 0.28 e Å3
2299 reflectionsAbsolute structure: ?
187 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.000000.000000.500000.0201 (1)
Cl10.86221 (8)0.03646 (8)0.30754 (4)0.0321 (2)
O10.87383 (17)0.1495 (2)0.52340 (10)0.0247 (6)
N10.7529 (2)0.1928 (3)0.49516 (12)0.0215 (6)
N20.8458 (2)0.1667 (3)0.46293 (12)0.0211 (6)
C10.8501 (2)0.2972 (3)0.40751 (15)0.0214 (7)
C20.8675 (3)0.2510 (3)0.33477 (15)0.0232 (8)
C30.8873 (3)0.3725 (4)0.28366 (16)0.0282 (8)
C40.8913 (3)0.5422 (4)0.30481 (17)0.0310 (9)
C50.8705 (3)0.5902 (3)0.37502 (16)0.0291 (8)
C60.8498 (3)0.4678 (3)0.42576 (16)0.0263 (8)
C70.7306 (2)0.0731 (3)0.54482 (15)0.0207 (7)
C80.7818 (3)0.0968 (3)0.55231 (15)0.0219 (7)
C90.7262 (3)0.2196 (3)0.59274 (16)0.0274 (8)
C100.6318 (3)0.1733 (4)0.62659 (16)0.0304 (9)
C110.5848 (3)0.0025 (4)0.62456 (16)0.0267 (8)
C120.4917 (3)0.0451 (4)0.66382 (16)0.0317 (9)
C130.4493 (3)0.2096 (4)0.66213 (17)0.0360 (10)
C140.4949 (3)0.3334 (4)0.62085 (17)0.0345 (9)
C150.5854 (3)0.2909 (4)0.58222 (16)0.0286 (8)
C160.6323 (2)0.1228 (3)0.58341 (15)0.0227 (8)
H30.897900.340500.235300.0340*
H40.908200.624900.271600.0370*
H50.870500.705200.388100.0350*
H60.835500.501000.472900.0310*
H90.755200.332800.595800.0330*
H100.596900.256200.651900.0360*
H120.459600.037000.690900.0380*
H130.389300.239900.688700.0430*
H140.464100.445500.619400.0410*
H150.615600.374800.555100.0340*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0171 (2)0.0261 (2)0.0214 (2)0.0055 (2)0.0123 (2)0.0032 (2)
Cl10.0429 (4)0.0302 (4)0.0314 (4)0.0010 (3)0.0235 (3)0.0026 (3)
O10.0221 (9)0.0280 (10)0.0301 (10)0.0037 (8)0.0169 (8)0.0024 (8)
N10.0169 (10)0.0304 (12)0.0199 (10)0.0027 (9)0.0101 (9)0.0008 (9)
N20.0183 (10)0.0276 (11)0.0220 (11)0.0058 (9)0.0129 (9)0.0027 (9)
C10.0155 (12)0.0287 (13)0.0224 (13)0.0061 (10)0.0099 (11)0.0058 (11)
C20.0205 (13)0.0276 (14)0.0233 (13)0.0049 (11)0.0104 (11)0.0016 (11)
C30.0289 (15)0.0391 (16)0.0200 (13)0.0039 (12)0.0131 (12)0.0059 (12)
C40.0313 (15)0.0342 (16)0.0279 (15)0.0045 (12)0.0116 (13)0.0109 (12)
C50.0294 (15)0.0260 (14)0.0306 (15)0.0067 (12)0.0096 (13)0.0055 (12)
C60.0242 (13)0.0326 (15)0.0246 (14)0.0090 (11)0.0121 (12)0.0033 (11)
C70.0139 (12)0.0304 (13)0.0190 (12)0.0001 (11)0.0074 (10)0.0008 (11)
C80.0153 (12)0.0322 (14)0.0181 (12)0.0000 (11)0.0062 (10)0.0008 (11)
C90.0265 (14)0.0269 (14)0.0297 (14)0.0013 (11)0.0117 (12)0.0000 (12)
C100.0288 (15)0.0426 (16)0.0252 (14)0.0069 (13)0.0164 (12)0.0021 (13)
C110.0185 (12)0.0432 (16)0.0201 (12)0.0012 (12)0.0091 (11)0.0018 (13)
C120.0232 (14)0.0547 (19)0.0226 (14)0.0019 (13)0.0147 (12)0.0012 (13)
C130.0254 (15)0.060 (2)0.0304 (15)0.0014 (14)0.0193 (13)0.0092 (15)
C140.0283 (15)0.0435 (17)0.0368 (16)0.0055 (13)0.0179 (13)0.0092 (14)
C150.0231 (14)0.0393 (16)0.0274 (14)0.0040 (12)0.0139 (12)0.0019 (13)
C160.0150 (12)0.0364 (15)0.0176 (12)0.0006 (11)0.0070 (11)0.0040 (11)
Geometric parameters (Å, º) top
Cu1—Cl13.1525 (7)C8—C91.434 (4)
Cu1—O11.8975 (17)C9—C101.358 (4)
Cu1—N21.961 (2)C10—C111.418 (4)
Cu1—Cl1i3.1525 (7)C11—C121.418 (4)
Cu1—O1i1.8975 (17)C11—C161.409 (4)
Cu1—N2i1.961 (2)C12—C131.357 (4)
Cl1—C21.743 (2)C13—C141.392 (4)
O1—C81.292 (4)C14—C151.377 (4)
N1—N21.291 (3)C15—C161.399 (4)
N1—C71.357 (3)C3—H30.9300
N2—C11.424 (3)C4—H40.9300
C1—C21.402 (4)C5—H50.9300
C1—C61.375 (3)C6—H60.9300
C2—C31.375 (4)C9—H90.9300
C3—C41.377 (4)C10—H100.9300
C4—C51.380 (4)C12—H120.9300
C5—C61.378 (4)C13—H130.9300
C7—C81.418 (3)C14—H140.9300
C7—C161.459 (3)C15—H150.9300
Cl1—Cu1—O1102.76 (5)O1—C8—C9117.5 (2)
Cl1—Cu1—N266.55 (6)C7—C8—C9118.4 (3)
Cl1—Cu1—Cl1i180.00C8—C9—C10121.0 (2)
Cl1—Cu1—O1i77.24 (5)C9—C10—C11122.0 (3)
Cl1—Cu1—N2i113.45 (6)C10—C11—C12121.2 (3)
O1—Cu1—N287.48 (8)C10—C11—C16119.5 (3)
Cl1i—Cu1—O177.24 (5)C12—C11—C16119.3 (3)
O1—Cu1—O1i180.00C11—C12—C13120.4 (3)
O1—Cu1—N2i92.52 (8)C12—C13—C14120.5 (3)
Cl1i—Cu1—N2113.45 (6)C13—C14—C15120.4 (3)
O1i—Cu1—N292.52 (8)C14—C15—C16120.7 (3)
N2—Cu1—N2i180.00C7—C16—C11118.8 (2)
Cl1i—Cu1—O1i102.76 (5)C7—C16—C15122.4 (2)
Cl1i—Cu1—N2i66.55 (6)C11—C16—C15118.8 (2)
O1i—Cu1—N2i87.48 (8)C2—C3—H3120.00
Cu1—Cl1—C280.64 (8)C4—C3—H3120.00
Cu1—O1—C8122.78 (15)C3—C4—H4120.00
N2—N1—C7120.0 (2)C5—C4—H4120.00
Cu1—N2—N1126.26 (17)C4—C5—H5120.00
Cu1—N2—C1118.61 (16)C6—C5—H5120.00
N1—N2—C1113.7 (2)C1—C6—H6120.00
N2—C1—C2119.0 (2)C5—C6—H6120.00
N2—C1—C6122.4 (2)C8—C9—H9119.00
C2—C1—C6118.4 (2)C10—C9—H9120.00
Cl1—C2—C1119.85 (19)C9—C10—H10119.00
Cl1—C2—C3119.1 (2)C11—C10—H10119.00
C1—C2—C3121.1 (2)C11—C12—H12120.00
C2—C3—C4119.3 (3)C13—C12—H12120.00
C3—C4—C5120.4 (3)C12—C13—H13120.00
C4—C5—C6120.0 (2)C14—C13—H13120.00
C1—C6—C5120.8 (2)C13—C14—H14120.00
N1—C7—C8124.3 (2)C15—C14—H14120.00
N1—C7—C16115.1 (2)C14—C15—H15120.00
C8—C7—C16120.1 (2)C16—C15—H15120.00
O1—C8—C7124.1 (2)
O1—Cu1—Cl1—C2123.11 (12)N2—C1—C6—C5172.4 (3)
N2—Cu1—Cl1—C241.58 (13)C2—C1—C6—C52.0 (4)
O1i—Cu1—Cl1—C256.89 (12)Cl1—C2—C3—C4179.9 (2)
N2i—Cu1—Cl1—C2138.42 (13)C1—C2—C3—C40.6 (5)
Cl1—Cu1—O1—C8102.24 (18)C2—C3—C4—C52.4 (5)
N2—Cu1—O1—C836.98 (19)C3—C4—C5—C62.0 (5)
Cl1i—Cu1—O1—C877.76 (18)C4—C5—C6—C10.3 (5)
N2i—Cu1—O1—C8143.03 (19)N1—C7—C8—O111.7 (4)
Cl1—Cu1—N2—N1142.2 (2)N1—C7—C8—C9166.8 (2)
Cl1—Cu1—N2—C152.32 (16)C16—C7—C8—O1176.7 (2)
O1—Cu1—N2—N137.1 (2)C16—C7—C8—C94.8 (4)
O1—Cu1—N2—C1157.39 (18)N1—C7—C16—C11169.5 (2)
Cl1i—Cu1—N2—N137.8 (2)N1—C7—C16—C1511.7 (3)
Cl1i—Cu1—N2—C1127.68 (16)C8—C7—C16—C112.9 (4)
O1i—Cu1—N2—N1142.9 (2)C8—C7—C16—C15176.0 (2)
O1i—Cu1—N2—C122.61 (18)O1—C8—C9—C10178.3 (2)
Cu1—Cl1—C2—C133.3 (2)C7—C8—C9—C103.1 (4)
Cu1—Cl1—C2—C3147.4 (3)C8—C9—C10—C110.7 (4)
Cu1—O1—C8—C721.9 (3)C9—C10—C11—C12176.8 (3)
Cu1—O1—C8—C9159.62 (18)C9—C10—C11—C162.7 (4)
C7—N1—N2—Cu118.4 (3)C10—C11—C12—C13179.1 (3)
C7—N1—N2—C1175.5 (2)C16—C11—C12—C130.3 (4)
N2—N1—C7—C813.2 (4)C10—C11—C16—C70.8 (4)
N2—N1—C7—C16174.8 (2)C10—C11—C16—C15179.8 (3)
Cu1—N2—C1—C253.1 (3)C12—C11—C16—C7178.6 (2)
Cu1—N2—C1—C6121.3 (2)C12—C11—C16—C150.3 (4)
N1—N2—C1—C2139.7 (2)C11—C12—C13—C141.0 (4)
N1—N2—C1—C646.0 (3)C12—C13—C14—C151.0 (4)
N2—C1—C2—Cl17.7 (3)C13—C14—C15—C160.4 (4)
N2—C1—C2—C3173.0 (3)C14—C15—C16—C7178.6 (3)
C6—C1—C2—Cl1177.7 (2)C14—C15—C16—C110.3 (4)
C6—C1—C2—C31.6 (4)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1ii0.932.623.300 (3)130
C5—H5···Cl1ii0.932.943.682 (3)138
Symmetry code: (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C16H10ClN2O)2]
Mr626.99
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)10.2218 (4), 7.8348 (3), 17.5678 (6)
β (°) 111.941 (2)
V3)1305.03 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.01 × 0.01 × 0.01
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7327, 2299, 1979
Rint0.030
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.082, 1.04
No. of reflections2299
No. of parameters187
No. of restraints0
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.28

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.623.300 (3)130
C5—H5···Cl1i0.932.943.682 (3)138
Symmetry code: (i) x, y+1, z.
Acknowledgements top

The authors thank the MESRS (Algeria) for financial support. MB especially thanks the Algerian MESRS for the financial support of a PNR project.

references
References top

Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Lee, S. H., Kim, J. Y., Ko, J., Lee, J. Y. & Kim, J. S. (2004). J. Org. Chem. 69, 2902–2905.

Lin, M.-L., Tsai, C.-Y., Li, C.-Y., Huang, B.-H. & Ko, B.-T. (2010). Acta Cryst. E66, m1022.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Oueslati, F., Dumazet-Bonnamour, I. & Lamartine, R. (2004). New J. Chem. 28, 1575–1578

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Tai, W.-J., Li, C.-H., Li, C.-Y. & Ko, B.-T. (2010). Acta Cryst. E66, m1315.