

 $V = 3996.65 (5) \text{ Å}^3$

Cu $K\alpha$ radiation

 $0.30 \times 0.10 \times 0.10 \ \mathrm{mm}$

27173 measured reflections

4029 independent reflections

3714 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.83 \text{ mm}^-$ T = 100 K

 $R_{\rm int} = 0.022$

238 parameters

 $\Delta \rho_{\text{max}} = 0.21 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.22 \text{ e } \text{\AA}^{-3}$

Z = 4

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Pallidol hexaacetate ethyl acetate monosolvate

Qinyong Mao,^a Dennis K. Taylor,^a‡ Seik Weng Ng^{b,c} and Edward R. T. Tiekink^b*

^aSchool of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, SA 5064, Australia, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: edward.tiekink@gmail.com

Received 18 June 2013; accepted 20 June 2013

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; some non-H atoms missing; R factor = 0.036; wR factor = 0.095; data-to-parameter ratio = 16.9.

The entire molecule of pallidol hexaacetate {systematic name: (\pm) -(4bR,5R,9bR,10R)-5,10-bis[4-(acetyloxy)phenyl]-4b,5,9b,10tetrahydroindeno[2,1-a]indene-1,3,6,8-tetrayl tetraacetate} is completed by the application of twofold rotational symmetry in the title ethyl acetate solvate, $C_{40}H_{34}O_{12}\cdot C_4H_8O_2$. The ethyl acetate molecule was highly disordered and was treated with the SQUEEZE routine [Spek (2009). Acta Cryst. D65, 148-155]; the crystallographic data take into account the presence of the solvent. In pallidol hexaacetate, the dihedral angle between the fused five-membered rings (r.m.s. deviation = 0.100 Å) is 54.73 (6)°, indicating a significant fold in the molecule. Significant twists between residues are also evident as seen in the dihedral angle of $80.70(5)^{\circ}$ between the fivemembered ring and the pendent benzene ring to which it is attached. Similarly, the acetate residues are twisted with respect to the benzene ring to which they are attached [C-O(carboxy) - C - C torsion angles = -70.24 (14), -114.43 (10)and $-72.54 (13)^{\circ}$]. In the crystal, a three-dimensional architecture is sustained by $C-H \cdots O$ interactions which encompass channels in which the disordered ethyl acetate molecules reside.

Related literature

For synthetic protocols, see: Takaya *et al.* (2005); Moss *et al.* (2013). For the spectroscopic characteristics of pallidol hexa-acetate, see: Khan *et al.* (1986).

Experimental

Crystal data

$C_{40}H_{34}O_{12} \cdot C_4H_8O_2$
$M_r = 794.78$
Monoclinic, C2/c
a = 13.1495 (1) Å
b = 12.7439 (1) Å
c = 24.0386 (2) Å
$\beta = 97.186 \ (1)^{\circ}$

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector

Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) $T_{min} = 0.790, T_{max} = 0.922$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.095$ S = 1.024029 reflections

Table 1 Hydrogen-bond geome

Hydrogen-bond geometric	ry (Å,	°).
-------------------------	--------	-----

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
C10−H10···O6 ⁱ	1.00	2.51	3.5053 (14)	179
C15−H15···O4 ⁱⁱ	0.95	2.59	3.4834 (12)	158
$C20-H20A\cdots O6^{iii}$	0.98	2.52	3.2708 (15)	133
$C20-H20B\cdots O2^{ii}$	0.98	2.28	3.2318 (16)	162
	1 (2)	. 3	1 1.4.722	a + 1

Symmetry codes: (i) $x - \frac{1}{2}$, $y + \frac{1}{2}$, z; (ii) $-x + \frac{3}{2}$, $-y + \frac{1}{2}$, -z + 1; (iii) -x + 2, y, $-z + \frac{1}{2}$.

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

This project was supported in part by the School of Agriculture, Food and Wine, The University of Adelaide, and by Australia's grape-growers and winemakers through their investment body, the Grape and Wine Research and Development Corporation, with matching funds from the Australian Government. QM thanks the Faculty of Science for a PhD scholarship. The authors also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM·C/HIR-MOHE/SC/ 03).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2614).

References

Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Farrugia, L. J. (2012). *J. Appl. Cryst.* **45**, 849–854. Khan, M. A., Nabi, S. G., Prakash, S. & Zaman, A. (1986). *Phytochemistry*, **25**,

- Khan, M. A., Nabi, S. G., Prakash, S. & Zaman, A. (1986). *Phytochemistry*, 25, 1945–1948.
- Moss, R., Mao, Q., Taylor, D. K. & Saucier, C. (2013). Rapid Commun. Mass Spectrom. DOI: 10.1002/rcm.6636.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Takaya, Y., Terashima, K., Ito, J., He, Y.-H., Tateoka, M., Yamaguchi, N. & Niwa, M. (2005). *Tetrahedron*, **61**, 10285–10290.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2013). E69, o1155-o1156 [https://doi.org/10.1107/S160053681301708X]

Pallidol hexaacetate ethyl acetate monosolvate

Qinyong Mao, Dennis K. Taylor, Seik Weng Ng and Edward R. T. Tiekink

S1. Comment

The synthesis of pallidol hexaacetate was achieved by employing a modified procedure to that reported by Takaya *et al.* (2005) as outlined by Moss *et al.* (2013) which involved the oxidation of *trans*-resveratrol with $K_3Fe(CN)_6$. Herein, the crystal structure determination of pallidol hexaacetate, isolated as its ethylacetate solvate, (I), is described.

The pallidol hexaacetate molecule is disposed about a two-fold rotation axis, Fig. 1. The central five-membered ring is approximately planar with a r.m.s. deviation of 0.100 Å. The maximum deviations = 0.086 (1) Å for the C10 atom and -0.081 (1) Å for the C9 atom, indicating a small twist about the C9—C10 bond. The dihedral angle between the mean planes of the fused five-membered rings is 54.73 (6)°, indicating significant curvature in the molecule. The pendent benzene ring is nearly perpendicular to the mean plane of the five-membered ring to which it is attached, forming a dihedral angle of 80.70 (5)°. None of the acetate residues are co-planar with the benzene ring to which they are attached as seen in the values of the C2—O1—C3—C4 [-70.24 (14)°], C17—O3—C16—C11 [-114.43 (10)°] and C19—O5—C14—C13 [-72.54 (13)°] torsion angles.

In the crystal, molecules assemble into a three-dimensional architecture *via* C—H···O interactions, Fig. 2 and Table 1. In so doing, they define channels in which, presumably, reside the disordered ethylacetate molecules.

S2. Experimental

To a stirred solution of trans-resveratrol (500 mg) and K₂CO₃ (245 mg) in MeOH (120 ml) at ambient temperature was slowly added an aqueous solution of K_3 Fe(CN)₆ (575 mg in 10 ml) over 5 minutes and the mixture stirred for a further 30 minutes. The mixture was then concentrated *in vacuo* and loaded directly onto a flash chromatography column and the organics eluted with EtOAc. The fraction containing the crude dimers was concentrated in vacuo and then dissolved in CH₂Cl₂ (60 ml) and DMSO (10 ml). Ac₂O (0.83 ml) and Et₃N (1.23 ml) were then added and the reaction mixture kept at ambient temperature for 24 h. The reaction was then quenched with $NaHCO_3$ (30 ml) and the organics extracted with EtOAc (3 x 30 ml). The combined organics were washed with water (20 ml), dried (MgSO₄) and the volatiles removed in vacuo. The acetates were then separated by flash column chromatography (increasing polarity from 20% to 50% ethylacetate in petroleum spirit) to afford pallidol hexaacetate (150 mg) along with several other dimers identified as trans-eviniferin pentaacetate and trans-δ-viniferin pentaacetate (120 mg, 1:2). Recrystallization of the pallidol hexaacetate from neat EtOAc afforded pure material as a colourless crystalline solid. Melting point 486.0–488.4 K; ¹H NMR (600 MHz, CDCl₃): δ 7.15 (4*H*, d, J = 8.4 Hz), 7.05 (4*H*, d, J = 8.4 Hz), 6.88 (2*H*, d, J = 1.8 Hz), 6.76 (2*H*, d, J = 1.8 Hz), 4.45 (2*H*, d, J dd, J = 3.0, 3.0 Hz), 4.17 (2*H*, dd, J = 3.0, 3.0 Hz), 2.30 (6*H*, 2 x OAc), 2.28 (6*H*, 2 x OAc), 1.69 (6*H*, 2 x OAc). ¹³C NMR (600 MHz, CDCl₃): *δ* 169.46, 169.01 and 167.82 (3 *x* COCH₃), 150.9, 149.5, 147.9, 147.4, 140.6, 133.6, 128.7, 121.8, 115.4, 115.1, 61.2, 55.7, 21.11, 21.09 and 19.95 (3 x COCH₃). All other spectral data are identical to those previously reported by Khan et al. (1986).

S3. Refinement

C-bound H-atoms were placed in calculated positions and were included in the refinement in the riding model approximation: C—H = 0.95 to 0.98 Å, with U_{iso} (H) =1.5 U_{eq} (C-methyl) and = 1.2 U_{eq} (C) for other H atoms. The heavily disordered ethyl acetate molecule, lying on a 2-fold rotation axis, was removed by using the SQUEEZE option in *PLATON* (Spek, 2009).

Figure 1

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Unlabelled atoms are related by the symmetry operation 1 - x, y, 1/2 - z. The disordered ethylacetate molecule is omitted.

Figure 2

A view in projection down the c axis of the unit-cell contents of (I). The C-H…O interactions are shown as blue dashed lines. The disordered ethylacetate molecules are omitted but, presumably lie in the occupied channels.

(±)-(4bR,5R,9bR,10R)-5,10-Bis[4-(acetyloxy)phenyl]-4b,5,9b,10-tetrahydroindeno[2,1-a]indene-1,3,6,8-tetrayl tetraacetate ethyl acetate monosolvate

Crystal data

 $C_{40}H_{34}O_{12}$ · $C_4H_8O_2$ $M_r = 794.78$ Monoclinic, C2/cHall symbol: -C 2yc *a* = 13.1495 (1) Å *b* = 12.7439 (1) Å c = 24.0386(2) Å $\beta = 97.186 \ (1)^{\circ}$ $V = 3996.65 (5) Å^3$ Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector Radiation source: SuperNova (Cu) X-ray Source $R_{\rm int} = 0.022$ Mirror monochromator Detector resolution: 10.4041 pixels mm⁻¹ $h = -16 \rightarrow 15$ ω scan Absorption correction: multi-scan $k = 0 \rightarrow 15$ (CrysAlis PRO; Agilent, 2013) $l = 0 \rightarrow 29$

F(000) = 1672 $D_{\rm x} = 1.321 {\rm Mg m^{-3}}$ Cu Ka radiation, $\lambda = 1.54184$ Å Cell parameters from 19786 reflections $\theta = 3.7 - 74.3^{\circ}$ $\mu = 0.83 \text{ mm}^{-1}$ T = 100 KPrism, colourless $0.30 \times 0.10 \times 0.10 \text{ mm}$

 $T_{\min} = 0.790, \ T_{\max} = 0.922$ 27173 measured reflections 4029 independent reflections 3714 reflections with $I > 2\sigma(I)$ $\theta_{\text{max}} = 74.4^{\circ}, \ \theta_{\text{min}} = 3.7^{\circ}$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.095$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
S = 1.02 4029 reflections	H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0505P)^2 + 2.699P]$
238 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant direct methods	$\Delta ho_{ m max} = 0.21$ e Å ⁻³ $\Delta ho_{ m min} = -0.22$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.23221 (6)	0.46511 (7)	0.48061 (3)	0.0295 (2)
O2	0.35408 (8)	0.41673 (8)	0.54965 (4)	0.0408 (2)
O3	0.56127 (6)	0.19610 (6)	0.42147 (3)	0.02298 (17)
O4	0.63350 (6)	0.31813 (7)	0.48240 (3)	0.02886 (19)
O5	0.88454 (6)	0.23900 (7)	0.35088 (3)	0.02608 (19)
O6	0.86993 (7)	0.10847 (7)	0.28727 (4)	0.0331 (2)
C1	0.20807 (11)	0.51331 (11)	0.57260 (5)	0.0374 (3)
H1A	0.2441	0.5165	0.6108	0.056*
H1B	0.1442	0.4737	0.5727	0.056*
H1C	0.1924	0.5846	0.5589	0.056*
C2	0.27454 (9)	0.46003 (9)	0.53515 (5)	0.0287 (3)
C3	0.28958 (8)	0.41950 (9)	0.44109 (4)	0.0244 (2)
C4	0.37948 (8)	0.46632 (9)	0.42947 (4)	0.0238 (2)
H4	0.4048	0.5278	0.4489	0.029*
C5	0.43189 (8)	0.42139 (8)	0.38878 (4)	0.0215 (2)
Н5	0.4939	0.4526	0.3805	0.026*
C6	0.39535 (8)	0.33136 (8)	0.35982 (4)	0.0194 (2)
C7	0.30498 (8)	0.28622 (9)	0.37288 (4)	0.0238 (2)
H7	0.2793	0.2248	0.3536	0.029*
C8	0.25172 (8)	0.32971 (10)	0.41377 (5)	0.0270 (2)
H8	0.1904	0.2982	0.4227	0.032*
C9	0.45295 (8)	0.28440 (8)	0.31499 (4)	0.0184 (2)
H9	0.4240	0.2132	0.3052	0.022*
C10	0.44581 (7)	0.35182 (8)	0.25998 (4)	0.0185 (2)
H10	0.4247	0.4252	0.2678	0.022*
C11	0.56755 (8)	0.27379 (8)	0.33139 (4)	0.0188 (2)
C12	0.62362 (8)	0.30738 (8)	0.28902 (4)	0.0191 (2)
C13	0.72954 (8)	0.29618 (8)	0.29446 (4)	0.0218 (2)

supporting information

H13	0.7679	0.3192	0.2658	0.026*
C14	0.77742 (8)	0.25032 (9)	0.34309 (4)	0.0220 (2)
C15	0.72490 (8)	0.21823 (8)	0.38658 (4)	0.0218 (2)
H15	0.7599	0.1880	0.4197	0.026*
C16	0.61939 (8)	0.23177 (8)	0.38003 (4)	0.0207 (2)
C17	0.57259 (8)	0.24896 (9)	0.47149 (4)	0.0229 (2)
C18	0.49717 (9)	0.20992 (11)	0.50834 (5)	0.0318 (3)
H18A	0.5242	0.2217	0.5477	0.048*
H18B	0.4856	0.1347	0.5019	0.048*
H18C	0.4322	0.2477	0.4996	0.048*
C19	0.92348 (9)	0.16363 (9)	0.31875 (4)	0.0255 (2)
C20	1.03744 (9)	0.16233 (11)	0.32956 (5)	0.0334 (3)
H20A	1.0641	0.1074	0.3068	0.050*
H20B	1.0589	0.1480	0.3694	0.050*
H20C	1.0643	0.2306	0.3197	0.050*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0263 (4)	0.0399 (5)	0.0223 (4)	0.0058 (3)	0.0037 (3)	-0.0057 (3)
O2	0.0498 (6)	0.0482 (6)	0.0237 (4)	0.0166 (5)	0.0015 (4)	0.0032 (4)
O3	0.0252 (4)	0.0263 (4)	0.0168 (3)	-0.0011 (3)	0.0004 (3)	0.0028 (3)
O4	0.0302 (4)	0.0337 (4)	0.0223 (4)	-0.0028 (3)	0.0017 (3)	-0.0036 (3)
O5	0.0180 (4)	0.0374 (5)	0.0217 (4)	0.0034 (3)	-0.0021 (3)	-0.0062 (3)
O6	0.0350 (5)	0.0312 (4)	0.0323 (4)	0.0066 (4)	0.0001 (3)	-0.0058 (4)
C1	0.0450 (7)	0.0404 (7)	0.0289 (6)	-0.0006 (6)	0.0127 (5)	-0.0086 (5)
C2	0.0362 (6)	0.0282 (6)	0.0221 (5)	-0.0005 (5)	0.0055 (5)	-0.0006 (4)
C3	0.0235 (5)	0.0311 (6)	0.0185 (5)	0.0061 (4)	0.0020 (4)	-0.0013 (4)
C4	0.0260 (5)	0.0242 (5)	0.0201 (5)	0.0012 (4)	-0.0013 (4)	-0.0026 (4)
C5	0.0219 (5)	0.0220 (5)	0.0202 (5)	-0.0012 (4)	0.0013 (4)	0.0008 (4)
C6	0.0195 (5)	0.0219 (5)	0.0159 (5)	0.0017 (4)	-0.0015 (4)	0.0018 (4)
C7	0.0221 (5)	0.0264 (5)	0.0222 (5)	-0.0031 (4)	-0.0004 (4)	-0.0031 (4)
C8	0.0203 (5)	0.0359 (6)	0.0247 (5)	-0.0022 (4)	0.0025 (4)	-0.0012 (5)
С9	0.0205 (5)	0.0173 (5)	0.0167 (5)	-0.0008(4)	-0.0009(4)	0.0004 (4)
C10	0.0205 (5)	0.0172 (5)	0.0172 (5)	0.0009 (4)	0.0003 (4)	0.0005 (4)
C11	0.0206 (5)	0.0165 (5)	0.0186 (5)	0.0005 (4)	0.0002 (4)	-0.0015 (4)
C12	0.0215 (5)	0.0182 (5)	0.0167 (5)	-0.0010 (4)	-0.0011 (4)	-0.0023 (4)
C13	0.0223 (5)	0.0251 (5)	0.0179 (5)	-0.0013 (4)	0.0017 (4)	-0.0034 (4)
C14	0.0179 (5)	0.0260 (5)	0.0209 (5)	0.0014 (4)	-0.0023 (4)	-0.0058 (4)
C15	0.0242 (5)	0.0227 (5)	0.0172 (5)	0.0032 (4)	-0.0025 (4)	-0.0024 (4)
C16	0.0241 (5)	0.0202 (5)	0.0172 (5)	0.0003 (4)	0.0012 (4)	-0.0005 (4)
C17	0.0240 (5)	0.0270 (5)	0.0166 (5)	0.0054 (4)	-0.0014 (4)	0.0028 (4)
C18	0.0305 (6)	0.0432 (7)	0.0220 (5)	0.0002 (5)	0.0043 (4)	0.0066 (5)
C19	0.0282 (6)	0.0289 (6)	0.0193 (5)	0.0082 (4)	0.0026 (4)	0.0045 (4)
C20	0.0254 (6)	0.0429 (7)	0.0321 (6)	0.0093 (5)	0.0044 (5)	0.0073 (5)

Geometric parameters (Å, °)

01—C2	1.3603 (14)	C9—C11	1.5152 (14)
O1—C3	1.4103 (13)	C9—C10	1.5697 (13)
O2—C2	1.1953 (15)	С9—Н9	1.0000
O3—C17	1.3700 (13)	C10-C12 ⁱ	1.5076 (14)
O3—C16	1.4049 (13)	C10-C10 ⁱ	1.560 (2)
O4—C17	1.1978 (14)	C10—H10	1.0000
O5—C19	1.3712 (13)	C11—C16	1.3854 (14)
O5—C14	1.4050 (13)	C11—C12	1.3972 (14)
O6—C19	1.1955 (14)	C12—C13	1.3900 (15)
C1—C2	1.4941 (16)	C12-C10 ⁱ	1.5076 (13)
C1—H1A	0.9800	C13—C14	1.3857 (15)
C1—H1B	0.9800	C13—H13	0.9500
C1—H1C	0.9800	C14—C15	1.3849 (15)
C3—C8	1.3807 (16)	C15—C16	1.3873 (15)
C3—C4	1.3835 (16)	C15—H15	0.9500
C4—C5	1.3886 (15)	C17—C18	1.4951 (15)
C4—H4	0.9500	C18—H18A	0.9800
C5—C6	1.3957 (15)	C18—H18B	0.9800
С5—Н5	0.9500	C18—H18C	0.9800
C6—C7	1.3910 (15)	C19—C20	1.4886 (16)
C6—C9	1.5158 (14)	C20—H20A	0.9800
С7—С8	1.3915 (15)	C20—H20B	0.9800
С7—Н7	0.9500	C20—H20C	0.9800
С8—Н8	0.9500		
C2 01 C2	11(15(0)	C12i C10 U10	110.1
$C_2 = 01 = C_3$	116.15 (9)	C12 C10H10	110.1
C1/-03-C16	117.01 (8)	C10-C10-H10	110.1
C19 - 05 - C14	115.82 (8)	C9—C10—H10	110.1
C2—CI—HIA	109.5	C16—C11—C12	119.00 (9)
C2—C1—HIB	109.5	C16—C11—C9	128.50 (9)
HIA—CI—HIB	109.5	C12—C11—C9	112.41 (9)
C2—C1—HIC	109.5	C13—C12—C11	120.93 (9)
HIA—CI—HIC	109.5	$C13-C12-C10^{1}$	127.87 (9)
H1B—C1—H1C	109.5	C11—C12—C10 ¹	111.20 (9)
02	122.74 (11)	C14—C13—C12	117.83 (10)
02	126.19 (11)	C14—C13—H13	121.1
01	111.06 (10)	C12—C13—H13	121.1
C8—C3—C4	121.86 (10)	C15—C14—C13	122.99 (10)
C8—C3—O1	118.07 (10)	C15—C14—O5	117.09 (9)
C4—C3—O1	120.05 (10)	C13—C14—O5	119.86 (10)
C3—C4—C5	118.44 (10)	C14—C15—C16	117.63 (10)
C3—C4—H4	120.8	C14—C15—H15	121.2
C5—C4—H4	120.8	С16—С15—Н15	121.2
C4—C5—C6	121.34 (10)	C11—C16—C15	121.55 (10)
C4—C5—H5	119.3	C11—C16—O3	118.01 (9)
С6—С5—Н5	119.3	C15—C16—O3	120.29 (9)

C7 $C($ $C5$	119 55 (10)	04 017 02	122 28 (10)
C/-CO-CS	118.55 (10)	04 - 017 - 03	125.38 (10)
C/-C0-C9	120.94 (9)	04 - 017 - 018	120.17 (10)
C_{5}	120.51 (9)		110.43 (10)
	120.95 (10)	C17—C18—H18A	109.5
С6—С/—Н/	119.5	C17—C18—H18B	109.5
С8—С7—Н7	119.5	H18A—C18—H18B	109.5
C3—C8—C7	118.86 (10)	C17—C18—H18C	109.5
С3—С8—Н8	120.6	H18A—C18—H18C	109.5
С7—С8—Н8	120.6	H18B—C18—H18C	109.5
C11—C9—C6	114.79 (8)	O6—C19—O5	122.45 (10)
C11—C9—C10	102.76 (8)	O6—C19—C20	127.18 (11)
C6—C9—C10	113.59 (8)	O5—C19—C20	110.37 (10)
С11—С9—Н9	108.5	С19—С20—Н20А	109.5
С6—С9—Н9	108.5	C19—C20—H20B	109.5
С10—С9—Н9	108.5	H20A—C20—H20B	109.5
C12 ⁱ C10C10 ⁱ	104.29 (9)	C19—C20—H20C	109.5
C12 ⁱ —C10—C9	114.78 (8)	H20A—C20—H20C	109.5
C10 ⁱ —C10—C9	107.37 (8)	H20B—C20—H20C	109.5
$C_{3} = 0_{1} = C_{2} = 0_{2}$	-2.36(17)	C10-C9-C11-C12	-11.21 (11)
$C_{3} = 0_{1} = C_{2} = C_{1}$	178.50 (10)	C_{16} C_{11} C_{12} C_{13}	1.96 (15)
$C_{2} = 01 = C_{3} = C_{8}$	111 57 (12)	C9-C11-C12-C13	-17497(9)
$C_2 = 01 = C_3 = C_4$	-70.24(14)	$C_{16} - C_{11} - C_{12} - C_{10^i}$	-179.25(9)
$C_{2} = C_{1} = C_{2} = C_{1}$	0.54(17)	$C9-C11-C12-C10^{i}$	3 83 (12)
$01 - C_3 - C_4 - C_5$	-17759(9)	C_{11} C_{12} C_{13} C_{14}	0.27(15)
$C_3 = C_4 = C_5$	0.24(16)	$C10^{i}$ $C12$ $C13$ $C14$	-178 31 (10)
$C_{3} - C_{4} - C_{5} - C_{6} - C_{7}$	-0.50(15)	$C_{10} - C_{12} - C_{13} - C_{14}$	-1.81(16)
C4 = C5 = C6 = C7	-0.39(13)	C12 - C13 - C14 - C13	-1.81(10)
C4 - C3 - C0 - C9	1/9.10(9)	C12 - C13 - C14 - C15	-1/8.90(9)
$C_{3} - C_{6} - C_{7} - C_{8}$	0.18(10)	C19 - 05 - C14 - C13	72.54 (12)
	-1/9.5/(9)	C19 - 05 - C14 - C13	=/2.54 (13)
C4—C3—C8—C7	-0.94 (17)	CI3-CI4-CI5-CI6	1.04 (16)
01-C3-C8-C7	177.22 (10)	O5—C14—C15—C16	178.20 (9)
C6—C7—C8—C3	0.57 (17)	C12—C11—C16—C15	-2.79 (15)
C7—C6—C9—C11	-133.77 (10)	C9—C11—C16—C15	173.58 (10)
C5—C6—C9—C11	46.49 (13)	C12—C11—C16—O3	-178.43 (9)
C7—C6—C9—C10	108.39 (11)	C9—C11—C16—O3	-2.06 (16)
C5—C6—C9—C10	-71.36 (12)	C14—C15—C16—C11	1.32 (16)
C11—C9—C10—C12 ⁱ	129.45 (9)	C14—C15—C16—O3	176.87 (9)
C6-C9-C10-C12 ⁱ	-105.94 (10)	C17—O3—C16—C11	-114.43 (10)
C11-C9-C10-C10 ⁱ	14.02 (9)	C17—O3—C16—C15	69.87 (13)
C6-C9-C10-C10 ⁱ	138.64 (8)	C16—O3—C17—O4	-5.04 (15)
C6—C9—C11—C16	48.41 (14)	C16—O3—C17—C18	173.34 (9)
C10—C9—C11—C16	172.23 (10)	C14—O5—C19—O6	-2.25 (15)
C6—C9—C11—C12	-135.02 (9)	C14—O5—C19—C20	178.01 (9)
			(-)

Symmetry code: (i) -x+1, *y*, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···· A	D—H··· A
C10—H10…O6 ⁱⁱ	1.00	2.51	3.5053 (14)	179
C15—H15····O4 ⁱⁱⁱ	0.95	2.59	3.4834 (12)	158
C20—H20 <i>A</i> ···O6 ^{iv}	0.98	2.52	3.2708 (15)	133
C20—H20 <i>B</i> ····O2 ⁱⁱⁱ	0.98	2.28	3.2318 (16)	162

Symmetry codes: (ii) *x*-1/2, *y*+1/2, *z*; (iii) -*x*+3/2, -*y*+1/2, -*z*+1; (iv) -*x*+2, *y*, -*z*+1/2.