supplementary materials


tk5228 scheme

Acta Cryst. (2013). E69, o1019-o1020    [ doi:10.1107/S1600536813014797 ]

N,N,N-Trimethyl-N-(methyl 5-deoxy-2,3-O-isopropylidene-[beta]-D-ribofuranosid-5-yl)ammonium 4-methylbenzenesulfonate sesquihydrate

B. Dmochowska, K. Sikora, J. Chojnacki, W. Wojnowski and A. Wisniewski

Abstract top

The structure of the title compound, [C12H24NO4][C7H7O3S]·1.5H2O, contains alternating layers parallel to (001) of hydrophobic and polar character, stabilized by C-H...O hydrogen bonding. The furan ring adopts an envelope conformation with the C(OMe) atom as the flap, and the dioxolane ring is twisted about one of the O-C(methine) bonds. A comparison to related compounds is presented. The tosylate-O atoms were disordered over two positions with the major component having a site occupancy factor = 0.566 (12). The structure was refined as a rotary twin with regard to rotation about the c axis with the contribution of the second component being 0.0048 (6). Solvate water molecules are highly disordered and were removed using the SQUEEZE procedure; the unit cell characteristics take into account the presence of the disordered solvent. High-resolution 1H and 13C NMR spectroscopic data are also presented.

Comment top

Scientists the world over have been interested in quaternary ammonium compounds (QACs) for over a hundred years (Jones, 1984; Śliwa, 1996, Sajomsang et al., 2009; Obłąk & Gamian, 2010). These salts display both inorganic properties (e.g. their excellent solubility in water) and organic ones, and their hydrophilic properties are due to their ionic nature. They are present in fabric softeners and corrosion inhibitors (Binks et al., 2011; Singh et al., 2009), they act as fungicides, pesticides and insecticides (Cruz-Guzman et al., 2005), they exhibit antibacterial and antifungal activities and are therefore constituents of antimicrobial drugs (Rabea et al., 2003; Belalia et al., 2008; McDonnell & Russell,1999) and they are ingredients of shampoos and hair conditioners (Boethling, 1984; Levinson, 1999; Cross & Singer, 1994). Without doubt, QACs are used worldwide in industry, agriculture, healthcare and the home. Recent years have witnessed a resurgence of interest in the synthesis of QACs, especially their sugar derivatives, which have potential biological properties (Abel et al., 2002; Blizzard et al., 2002; Honda et al., 1988; Thomas et al., 2009; Maslov et al., 2010).

One of our current research objectives is to find a correlation between the structure of the substituents around the quaternary nitrogen atom and the biological activity of the compounds concerned (Dmochowska et al., 2011; Pellowska-Januszek et al., 2004). The synthesis of QACs possessing a substituent that would increase the solubility of these salts appears to be interesting, and the incorporation into the QAC molecule of such a natural entity as a sugar unit could be very effective.

Synthetic work

Our research group synthesized numerous N-[(1,4-anhydro-5-deoxy-2,3-O-isopropylidene-D,L-ribitol)-5-yl]aminium tosylates (Dmochowska et al., 2006; 2009; Skorupa et al., 2004). We thought it would be very interesting to examine the synthesis of analogous QACs with methyl 2,3-O-isopropylidene-β-D-ribofuranoside and the influence of the O-Me substituent at the anomeric carbon atom on the course of the quaternization reaction at C-5 and on the conformation of the furanoic ring.

The synthesis of N-[(methyl 5-deoxy-2,3-O-isopropylidene-β-D-ribofuranoside)-5-yl]aminium tosylates began with commercially available D-ribose (1), Fig. 1, which was converted to methyl 2,3-O-isopropylidene-β-D-ribofuranoside (2), (Gosh & Liu 1996; Sairam et al., 2003). Next, the hydroxyl group at C-5 of compound 2 was activated with p-toluenesulfonyl chloride using a well known method (Sarabia-Garcia & Lopez-Herrera, 1996). The idea was to investigate the reactions of methyl 2,3-O-isopropylidene-5-O-tosyl-β-D-ribofuranoside (3) with tertiary amines, viz. triethylamine, trimethylamine, 4-(N,N-dimethylamino)pyridine, isoquinoline, 2-methylpyridine and pyridine. All the newly synthesized N-[(methyl 5-deoxy-2,3-O-isopropylidene-β-D-ribofuranoside)-5-yl]aminium tosylates were water-soluble. Their structures were determined by NMR. Here we report the X-ray structure of the product with NMe3.

The reaction of 3 with 33% ethanolic solution of NMe3 (70° C, 48 h) yielded N-[(methyl 5-deoxy-2,3-O-isopropylidene-β-D-ribofuranoside)-5-yl]-N,N,N-trimethylammonium tosylate (4), (yield 67%). Its identity was also confirmed by 1H and 13C NMR spectra.

Description of the X-ray structure

Crystals belong to the monoclinic system, space group P21. The asymmetric unit of (4) contains one tertiary ammonium cation and one tosyl anion and one and half molecules of solvate water (Fig. 2). The charged parts of both ions are directed towards the middle of the cell, forming a hydrophilic layer, perpendicular to the c axis (Fig. 3). The structure is reinforced by non-conventional C—H···O hydrogen bonds, which are formed perhaps due to the strong acceptor properties of anionic oxygen atoms (see Table 1). The region of disordered solvent is located in the hydrophilic layer and use of SQUEEZE recovered 16.8 e- from a void of volume V = 101.8 Å3. Electron density, found in the void, was interpreted as coming from one and half molecules of water per one ionic pair. Naturally, this leads to formation of additional hydrogen bonds in the hydrophilic layer.

Ring puckering analysis (Cremer & Pople 1975; Spek, 2009) of 4 shows that the five-membered furan ring adopts the envelope C1 – endo conformation (with Q = 0.301 (3) Å, φ= 227.4 (6)°, P = 314.5 (3)° and τm (C2—C3) = 32.8 (2)°). Noteworthy, C1 atom is substituted by the methoxy group which may be the reason for increased stability of the conformation. In the analogous compound, substituted by hydrogen at position 1, not a carbon atom but an oxygen atom defined the envelope (see Table 2). Apparently, the opposite is true for compounds without the protection of OH groups. However, electrostatic forces also contribute significantly to the free energy balance, leading in the case of iodide to formation of the twisted furan ring.

The oxolane ring, O6—C2—C3—O8—C7, is best described as having the twisted conformation about the O6—C2 bond (with Q = 0.319 (3) Å, φ = 11.5 (6)°, P = 100.3 (3)° and τm (C3—O8) = 34.9 (2)°). To facilitate comparisons, we also included data on, published recently, trans-3,4 dihydroxy substituted analogue, (3,4-dihydroxyoxolan-2-yl)methyl 4-methylbenzenesulfonate (Dibrov et al., 2010) whose conformation was not described by the authors (Q = 0.397 Å, φ = 245.4°, P = 333.7° and τm (C1—C8) = 41.7°).

Related literature top

For background to quaternary ammonium compounds, see: Jones (1984); Śliwa (1996); Sajomsang et al. (2009); Obłąk & Gamian (2010); Binks et al. (2011); Singh et al. (2009); Cruz-Guzman et al. (2005); Rabea et al. (2003); Belalia et al., 2008; McDonnell & Russell (1999); Boethling (1984); Levinson (1999); Cross & Singer (1994). For QAC sugar derivatives, see: Abel et al. (2002); Blizzard et al. (2002); Honda et al. (1988); Thomas et al. (2009); Maslov et al. (2010); Dmochowska et al. (2006, 2009, 2011); Pellowska-Januszek et al. (2004); Skorupa et al. (2004). For related synthetic methods, see: Gosh & Liu (1996); Sairam et al. 2003; Sarabia-Garcia & Lopez-Herrera (1996); Dibrov et al. (2010). For ring puckering analysis, see: Cremer & Pople (1975).

Experimental top

General remarks

Commercial D-ribose (Fluka) was used. All reactions were monitored by thin-layer chromatography (TLC) on Kieselgel 60 F254 Silica Gel plates (E. Merck, 0.20 mm thickness) using eluent system (v/v) 3:1 CHCl3 – MeOH. The spots were detected by spraying with 5% ethanolic H2SO4 and charring. 1H and 13C NMR spectra (CDCl3, internal Me4Si) on a Varian Mercury 400 (400.49/100.70 MHz) instrument; positive-ion mode MALDITOF mass spectra on a Bruker Biflex III spectrometer with α-cyano-4-hydroxycinnamic acid as the matrix.

Synthesis of N-[(methyl 5-deoxy-2,3-O-isopropylidene-β-D-ribofuranoside)-5-yl]-N,N,N-trimethylammonium tosylate (4)

Methyl 2,3-O-isopropylidene-5-O-tosyl-β-D-ribofuranoside (3) (150 mg, 0.42 mmol) was dissolved in 33% ethanolic solution of NMe3 (0.31 ml). The solution was stored for 48 h in a screw-capped ampoule at 70°C, then the solvents were evaporated to dryness. The residue was dissolved in H2O, then extracted with CHCl3. The aqueous layer was evaporated and dried to yield quaternary aminium compound, which was recrystallized from 2-butanone, 4 (117.5 mg, 67%); M.pt: 348–351 K; [α]D20 -12.0 (c 1/5, H2O); 1H-NMR (D2O): δ 7.71–7.39 (2 d, each 2H, Ph), 5.22 (s, 1H, H-1), 4.89 (dd, 1H, H-3, J2,3 5.6; J3.4 1.4), 4.81 (d, 1H, H-2, J2,3 6.0), 4.77 (m, 1H, H-4, J4,5' 9.6), 3.69 (dd, 1H, H-5, J4,5 2.6, J5,5' 14.0), 3.55 (dd, 1H, H-5', J4,5' 9.6), 3.49 (s, 3H, –OCH3), 3.26 (s, 9H, N(CH3)3), 2.42 (s, 3H, PhCH3), 1.56- 1.40 (2 s, each 3H, C(CH3)2); 13C NMR (H2O) δ 129.66-125.70 (C, Ph), 114.08 (C, C(CH3)2), 110.42 (C-1), 83.86 (C-2), 83.08 (C-3), 81.16 (C-4), 68.91 (C-5), 56.32 (OCH3), 54.26 (N(CH3)3), 25.62- 24.02 (C, C(CH3)2), 20.70 (C, PhCH3); MALDI TOF– MS (CCA): m/z 246 ([M-OTs]+).

Refinement top

All hydrogen atoms were refined as riding with C–H distances in the range 0.95–1.00 Å and thermal ellipsoids Uiso(H) = 1.5 Uiso(C) for methyl groups or Uizo(H) = 1.2 Uiso(C) for aromatic or tertiary hydrogen atoms. Oxygen atoms of the tosyl group were refined as disordered over two positions with occupancies of 0.434 (12) and 0.566 (12). Bonds S—O in the tosyl group were constrained to be all equal. The structure was refined as a rotary twin with regard to rotation about the c axis with a small contribution of the second component of 0.0048 (6); R-indices with no twinning were wR2 = 0.143 and R1 = 0.052. Structure contains voids at x,y,z (0, 0, 1/2) filled with a disordered solvent, which is difficult to model. Use of program SQUEEZE (Spek, 2009) revealed electron density in that place equivalent to 16.8 e-, and volume of the void of ca 102 Å3. It can be attributed to the presence of one and half strongly disordered water molecule positioned in the hydrophilic layer. Three peaks in the asymmetric unit in the region could be found which may mean that position of water molecules can be coupled with the local disorder of the tosyl group oxygen atoms. The original reflection data were corrected for this electron density by the mentioned program. The formula, formula weight, F(000), density and absorption coefficient were corrected for water content in the CIF file. Conformational analysis parameters were calculated using PLATON program by Spek (2009).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 2012); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Preparation of N-[(methyl 5-deoxy-2,3-O-isopropylidene-β-D-ribofuranoside)-5-yl]-N,N,N-trimethylammonium tosylate, (4). Reagents: (i) SnCl2.2H2O, conc. H2SO4, acetone, MeOH; (ii) TsCl, py; (iii) 33% ethanolic solution of NMe3.
[Figure 2] Fig. 2. Molecular structure of N-[(methyl 5-deoxy-2,3-O-isopropylidene-β-D-ribofuranoside)-5-yl]-N,N,N-trimethylammonium tosylate, (4). Displacement ellipsoids drawn at 50% probability level. Oxygen atoms in the tosyl anion are disordered over two positions.
[Figure 3] Fig. 3. Packing diagram of 4, showing network of non-classical hydrogen bonds of the CH···O type and the hydrophilic / hydrophobic layers.
N,N,N-Trimethyl-N-(methyl 5-deoxy-2,3-O-isopropylidene-β-D-ribofuranosid-5-yl)ammonium 4-methylbenzenesulfonate sesquihydrate top
Crystal data top
C12H24NO4+·C7H7O3S·1.5H2OF(000) = 478
Mr = 444.53Dx = 1.292 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3067 reflections
a = 11.4896 (15) Åθ = 2–30°
b = 7.9311 (11) ŵ = 0.19 mm1
c = 13.4853 (17) ÅT = 200 K
β = 111.619 (12)°Block, colourless
V = 1142.4 (3) Å30.37 × 0.2 × 0.17 mm
Z = 2
Data collection top
Kuma KM4CCD (Sapphire2 detector)
diffractometer
Rint = 0.038
Graphite monochromatorθmax = 26°, θmin = 2.9°
ω scans, 1 deg framesh = 1414
26053 measured reflectionsk = 99
4481 independent reflectionsl = 1616
4325 reflections with I > 2σ(I)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0737P)2 + 0.6709P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.007
4481 reflectionsΔρmax = 0.40 e Å3
283 parametersΔρmin = 0.31 e Å3
40 restraintsAbsolute structure: Flack & Bernardinelli (1999)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (12)
Crystal data top
C12H24NO4+·C7H7O3S·1.5H2OV = 1142.4 (3) Å3
Mr = 444.53Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.4896 (15) ŵ = 0.19 mm1
b = 7.9311 (11) ÅT = 200 K
c = 13.4853 (17) Å0.37 × 0.2 × 0.17 mm
β = 111.619 (12)°
Data collection top
Kuma KM4CCD (Sapphire2 detector)
diffractometer
4325 reflections with I > 2σ(I)
26053 measured reflectionsRint = 0.038
4481 independent reflectionsθmax = 26°
Refinement top
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.139Δρmax = 0.40 e Å3
S = 1.07Δρmin = 0.31 e Å3
4481 reflectionsAbsolute structure: Flack & Bernardinelli (1999)
283 parametersAbsolute structure parameter: 0.08 (12)
40 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4006 (3)0.9674 (4)0.8428 (2)0.0299 (6)
H10.45171.01470.91440.036*
C20.4217 (3)0.7801 (4)0.8398 (2)0.0294 (6)
H20.36760.71230.86830.035*
C30.3957 (3)0.7445 (4)0.7215 (2)0.0284 (6)
H30.30890.7010.68360.034*
C40.4153 (3)0.9195 (3)0.6776 (2)0.0261 (6)
H40.49130.91440.65840.031*
O50.43649 (19)1.0397 (3)0.76273 (15)0.0295 (5)
O60.5509 (2)0.7393 (3)0.88856 (15)0.0322 (5)
C70.5743 (3)0.6006 (4)0.8296 (2)0.0314 (6)
O80.4872 (2)0.6252 (3)0.72143 (15)0.0392 (5)
C90.5476 (4)0.4340 (4)0.8700 (3)0.0447 (8)
H9A0.56430.34250.82810.067*
H9B0.45970.430.86280.067*
H9C0.60150.42070.94520.067*
C100.7061 (3)0.6147 (5)0.8315 (3)0.0457 (8)
H10A0.72290.52060.79160.069*
H10B0.76560.61140.90540.069*
H10C0.71540.72150.79850.069*
C110.3025 (3)0.9654 (4)0.5787 (2)0.0282 (6)
H11A0.28150.86710.530.034*
H11B0.23040.98570.60050.034*
N120.3178 (2)1.1180 (3)0.51680 (16)0.0272 (5)
C130.4218 (3)1.0949 (4)0.4768 (2)0.0378 (7)
H13A0.40810.99090.43470.057*
H13B0.50161.08750.53740.057*
H13C0.42391.19110.43190.057*
C140.1974 (3)1.1358 (5)0.4218 (2)0.0424 (7)
H14A0.12771.15110.44630.064*
H14B0.18331.0340.37770.064*
H14C0.20281.23390.37960.064*
C150.3408 (4)1.2769 (4)0.5807 (3)0.0407 (8)
H15A0.27321.29390.60760.061*
H15B0.34341.37250.53540.061*
H15C0.42091.26860.64090.061*
O160.2726 (2)0.9863 (3)0.8220 (2)0.0411 (6)
C170.2344 (4)1.1544 (6)0.8338 (3)0.0527 (9)
H17A0.1441.15640.81760.079*
H17B0.25451.22960.78470.079*
H17C0.27871.19240.90730.079*
C180.8291 (3)0.1549 (4)0.8487 (2)0.0322 (6)
C190.9296 (3)0.2527 (5)0.9119 (4)0.0503 (9)
H190.97730.31540.88020.06*
C200.9596 (3)0.2581 (5)1.0210 (4)0.0550 (10)
H201.0280.32571.06380.066*
C210.8916 (3)0.1665 (5)1.0694 (3)0.0497 (10)
C220.7906 (3)0.0723 (4)1.0053 (3)0.0391 (7)
H220.74240.01011.03680.047*
C230.7587 (3)0.0678 (4)0.8952 (2)0.0313 (6)
H230.68810.00440.85190.038*
C240.9289 (5)0.1691 (8)1.1889 (3)0.086 (2)
H24A1.01390.1241.22270.13*
H24B0.87050.09951.20890.13*
H24C0.92650.28521.21290.13*
S250.78821 (10)0.14712 (13)0.70869 (7)0.0533 (3)
O260.6888 (12)0.2652 (11)0.6587 (9)0.063 (4)0.434 (12)
O270.7138 (7)0.0238 (7)0.6715 (4)0.039 (2)0.434 (12)
O280.8913 (7)0.138 (2)0.6800 (6)0.093 (6)0.434 (12)
O26A0.8903 (7)0.2787 (11)0.7015 (6)0.074 (2)0.566 (12)
O27A0.8177 (15)0.0076 (8)0.6870 (7)0.115 (6)0.566 (12)
O28A0.6753 (10)0.235 (2)0.6701 (10)0.109 (6)0.566 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0336 (15)0.0316 (15)0.0258 (13)0.0032 (12)0.0123 (11)0.0008 (11)
C20.0327 (15)0.0305 (15)0.0276 (13)0.0006 (12)0.0142 (11)0.0016 (11)
C30.0305 (15)0.0277 (14)0.0249 (13)0.0006 (12)0.0077 (11)0.0011 (11)
C40.0288 (14)0.0267 (14)0.0220 (12)0.0006 (11)0.0085 (10)0.0003 (10)
O50.0378 (11)0.0260 (10)0.0245 (9)0.0026 (8)0.0112 (8)0.0017 (8)
O60.0363 (11)0.0317 (11)0.0238 (9)0.0047 (9)0.0053 (8)0.0036 (8)
C70.0411 (16)0.0258 (15)0.0239 (13)0.0045 (12)0.0080 (11)0.0005 (11)
O80.0576 (14)0.0338 (12)0.0235 (9)0.0153 (11)0.0117 (9)0.0003 (9)
C90.071 (2)0.0285 (17)0.0331 (16)0.0007 (16)0.0170 (16)0.0024 (13)
C100.0428 (18)0.042 (2)0.0556 (19)0.0086 (16)0.0216 (15)0.0026 (16)
C110.0317 (15)0.0285 (15)0.0232 (12)0.0037 (12)0.0089 (11)0.0035 (11)
N120.0320 (12)0.0271 (12)0.0213 (10)0.0037 (10)0.0083 (9)0.0014 (9)
C130.0438 (17)0.0425 (19)0.0320 (14)0.0032 (15)0.0199 (13)0.0026 (13)
C140.0395 (17)0.0455 (19)0.0325 (14)0.0001 (15)0.0019 (12)0.0118 (15)
C150.064 (2)0.0266 (16)0.0340 (16)0.0035 (15)0.0214 (15)0.0020 (13)
O160.0346 (12)0.0409 (13)0.0544 (13)0.0037 (10)0.0242 (10)0.0032 (11)
C170.055 (2)0.051 (2)0.058 (2)0.0229 (19)0.0277 (18)0.0015 (19)
C180.0295 (14)0.0293 (15)0.0397 (15)0.0087 (13)0.0150 (12)0.0041 (13)
C190.0292 (17)0.0359 (18)0.085 (3)0.0051 (14)0.0198 (17)0.0035 (18)
C200.0311 (18)0.047 (2)0.071 (3)0.0012 (16)0.0001 (17)0.020 (2)
C210.0426 (19)0.052 (2)0.0374 (17)0.0237 (17)0.0054 (14)0.0122 (16)
C220.0429 (18)0.0407 (18)0.0365 (16)0.0116 (14)0.0178 (14)0.0057 (13)
C230.0291 (14)0.0267 (14)0.0343 (15)0.0008 (11)0.0073 (12)0.0011 (11)
C240.086 (3)0.113 (4)0.037 (2)0.054 (3)0.005 (2)0.022 (2)
S250.0711 (7)0.0562 (6)0.0434 (4)0.0187 (5)0.0335 (4)0.0176 (4)
O260.110 (10)0.025 (3)0.026 (4)0.011 (4)0.006 (4)0.004 (3)
O270.055 (4)0.034 (3)0.028 (3)0.011 (3)0.017 (3)0.012 (2)
O280.060 (5)0.185 (16)0.046 (4)0.043 (7)0.034 (3)0.015 (6)
O26A0.087 (5)0.082 (5)0.076 (4)0.001 (4)0.057 (4)0.013 (4)
O27A0.261 (18)0.043 (3)0.077 (5)0.007 (6)0.105 (8)0.005 (3)
O28A0.050 (5)0.211 (15)0.057 (5)0.017 (6)0.008 (4)0.027 (6)
Geometric parameters (Å, º) top
C1—O161.400 (4)C14—H14A0.98
C1—O51.411 (3)C14—H14B0.98
C1—C21.508 (4)C14—H14C0.98
C1—H11C15—H15A0.98
C2—O61.421 (4)C15—H15B0.98
C2—C31.537 (4)C15—H15C0.98
C2—H21O16—C171.431 (5)
C3—O81.414 (4)C17—H17A0.98
C3—C41.557 (4)C17—H17B0.98
C3—H31C17—H17C0.98
C4—O51.442 (3)C18—C231.377 (4)
C4—C111.522 (4)C18—C191.391 (5)
C4—H41C18—S251.771 (3)
O6—C71.439 (3)C19—C201.383 (6)
C7—O81.447 (3)C19—H190.95
C7—C91.503 (4)C20—C211.393 (6)
C7—C101.510 (5)C20—H200.95
C9—H9A0.98C21—C221.383 (5)
C9—H9B0.98C21—C241.508 (5)
C9—H9C0.98C22—C231.393 (4)
C10—H10A0.98C22—H220.95
C10—H10B0.98C23—H230.95
C10—H10C0.98C24—H24A0.98
C11—N121.516 (3)C24—H24B0.98
C11—H11A0.99C24—H24C0.98
C11—H11B0.99S25—O27A1.334 (6)
N12—C131.493 (4)S25—O281.377 (7)
N12—C151.494 (4)S25—O28A1.396 (9)
N12—C141.507 (4)S25—O261.438 (9)
C13—H13A0.98S25—O271.582 (6)
C13—H13B0.98S25—O26A1.599 (7)
C13—H13C0.98
O16—C1—O5112.6 (2)N12—C14—H14A109.5
O16—C1—C2105.5 (3)N12—C14—H14B109.5
O5—C1—C2106.5 (2)H14A—C14—H14B109.5
O16—C1—H1110.7N12—C14—H14C109.5
O5—C1—H1110.7H14A—C14—H14C109.5
C2—C1—H1110.7H14B—C14—H14C109.5
O6—C2—C1111.3 (2)N12—C15—H15A109.5
O6—C2—C3102.1 (2)N12—C15—H15B109.5
C1—C2—C3103.7 (2)H15A—C15—H15B109.5
O6—C2—H2113N12—C15—H15C109.5
C1—C2—H2113H15A—C15—H15C109.5
C3—C2—H2113H15B—C15—H15C109.5
O8—C3—C2105.2 (2)C1—O16—C17114.8 (3)
O8—C3—C4112.7 (2)O16—C17—H17A109.5
C2—C3—C4103.3 (2)O16—C17—H17B109.5
O8—C3—H3111.7H17A—C17—H17B109.5
C2—C3—H3111.7O16—C17—H17C109.5
C4—C3—H3111.7H17A—C17—H17C109.5
O5—C4—C11112.3 (2)H17B—C17—H17C109.5
O5—C4—C3107.0 (2)C23—C18—C19119.6 (3)
C11—C4—C3110.6 (2)C23—C18—S25119.9 (2)
O5—C4—H4109C19—C18—S25120.4 (3)
C11—C4—H4109C20—C19—C18119.7 (3)
C3—C4—H4109C20—C19—H19120.2
C1—O5—C4109.2 (2)C18—C19—H19120.2
C2—O6—C7107.1 (2)C19—C20—C21121.2 (3)
O6—C7—O8104.7 (2)C19—C20—H20119.4
O6—C7—C9111.6 (2)C21—C20—H20119.4
O8—C7—C9109.0 (3)C22—C21—C20118.4 (3)
O6—C7—C10109.0 (3)C22—C21—C24121.1 (5)
O8—C7—C10108.9 (3)C20—C21—C24120.4 (4)
C9—C7—C10113.4 (3)C21—C22—C23120.7 (3)
C3—O8—C7109.1 (2)C21—C22—H22119.7
C7—C9—H9A109.5C23—C22—H22119.7
C7—C9—H9B109.5C18—C23—C22120.3 (3)
H9A—C9—H9B109.5C18—C23—H23119.9
C7—C9—H9C109.5C22—C23—H23119.9
H9A—C9—H9C109.5C21—C24—H24A109.5
H9B—C9—H9C109.5C21—C24—H24B109.5
C7—C10—H10A109.5H24A—C24—H24B109.5
C7—C10—H10B109.5C21—C24—H24C109.5
H10A—C10—H10B109.5H24A—C24—H24C109.5
C7—C10—H10C109.5H24B—C24—H24C109.5
H10A—C10—H10C109.5O27A—S25—O2865.0 (8)
H10B—C10—H10C109.5O27A—S25—O28A131.0 (9)
N12—C11—C4116.1 (2)O28—S25—O28A134.3 (8)
N12—C11—H11A108.3O27A—S25—O26135.9 (7)
C4—C11—H11A108.3O28—S25—O26121.2 (8)
N12—C11—H11B108.3O27A—S25—O2745.1 (6)
C4—C11—H11B108.3O28—S25—O27106.7 (7)
H11A—C11—H11B107.4O28A—S25—O2789.6 (7)
C13—N12—C15108.5 (2)O26—S25—O2799.6 (5)
C13—N12—C14108.1 (2)O27A—S25—O26A109.6 (6)
C15—N12—C14108.8 (3)O28A—S25—O26A104.6 (7)
C13—N12—C11111.8 (2)O26—S25—O26A91.2 (7)
C15—N12—C11112.8 (2)O27—S25—O26A149.6 (3)
C14—N12—C11106.7 (2)O27A—S25—C18106.1 (4)
N12—C13—H13A109.5O28—S25—C18112.6 (3)
N12—C13—H13B109.5O28A—S25—C18103.0 (6)
H13A—C13—H13B109.5O26—S25—C18109.3 (5)
N12—C13—H13C109.5O27—S25—C18105.6 (2)
H13A—C13—H13C109.5O26A—S25—C1897.4 (3)
H13B—C13—H13C109.5
O16—C1—C2—O6163.4 (2)C9—C7—O8—C3105.0 (3)
O5—C1—C2—O676.7 (3)C10—C7—O8—C3130.9 (3)
O16—C1—C2—C387.6 (3)O5—C4—C11—N1270.6 (3)
O5—C1—C2—C332.4 (3)C3—C4—C11—N12170.0 (2)
O6—C2—C3—O824.8 (3)C4—C11—N12—C1360.4 (3)
C1—C2—C3—O8140.5 (2)C4—C11—N12—C1562.1 (3)
O6—C2—C3—C493.5 (3)C4—C11—N12—C14178.4 (3)
C1—C2—C3—C422.2 (3)O5—C1—O16—C1771.4 (3)
O8—C3—C4—O5118.6 (2)C2—C1—O16—C17172.8 (3)
C2—C3—C4—O55.5 (3)C23—C18—C19—C201.6 (5)
O8—C3—C4—C11118.8 (3)S25—C18—C19—C20179.5 (3)
C2—C3—C4—C11128.1 (2)C18—C19—C20—C210.4 (6)
O16—C1—O5—C485.3 (3)C19—C20—C21—C221.6 (6)
C2—C1—O5—C430.0 (3)C19—C20—C21—C24177.7 (4)
C11—C4—O5—C1106.6 (3)C20—C21—C22—C230.8 (5)
C3—C4—O5—C114.9 (3)C24—C21—C22—C23178.5 (3)
C1—C2—O6—C7144.6 (2)C19—C18—C23—C222.4 (5)
C3—C2—O6—C734.5 (3)S25—C18—C23—C22179.6 (2)
C2—O6—C7—O831.5 (3)C21—C22—C23—C181.2 (5)
C2—O6—C7—C986.3 (3)C23—C18—S25—O2724.9 (4)
C2—O6—C7—C10147.8 (3)C19—C18—S25—O27157.2 (4)
C2—C3—O8—C76.3 (3)C23—C18—S25—O26A175.2 (4)
C4—C3—O8—C7105.6 (3)C19—C18—S25—O26A2.7 (4)
O6—C7—O8—C314.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O28Ai0.982.453.412 (15)167
C13—H13B···O28Aii0.982.443.308 (13)148
C14—H14B···O26Ai0.982.303.251 (9)163
C14—H14C···O27Aiii0.982.223.161 (8)162
C15—H15C···O50.982.412.964 (4)115
C19—H19···O26A0.952.262.712 (9)108
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y+1, z; (iii) x+1, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC12H24NO4+·C7H7O3S·1.5H2O
Mr444.53
Crystal system, space groupMonoclinic, P21
Temperature (K)200
a, b, c (Å)11.4896 (15), 7.9311 (11), 13.4853 (17)
β (°) 111.619 (12)
V3)1142.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.37 × 0.2 × 0.17
Data collection
DiffractometerKuma KM4CCD (Sapphire2 detector)
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
26053, 4481, 4325
Rint0.038
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.139, 1.07
No. of reflections4481
No. of parameters283
No. of restraints40
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.31
Absolute structureFlack & Bernardinelli (1999)
Absolute structure parameter0.08 (12)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 2012), Mercury (Macrae et al., 2006), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O28Ai0.982.453.412 (15)167
C13—H13B···O28Aii0.982.443.308 (13)148
C14—H14B···O26Ai0.982.303.251 (9)163
C14—H14C···O27Aiii0.982.223.161 (8)162
C15—H15C···O50.982.412.964 (4)115
C19—H19···O26A0.952.262.712 (9)108
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y+1, z; (iii) x+1, y+3/2, z+1.
Conformations of six selected compounds. Atom numbering schema taken from the original papers. Qualitative puckering descriptors (envelope, twisted) are the ones closest to the observed data. top
Conformation of the furanoic ringConformation of the dioxolane ringC1 substitutionC2–C3 substitutionC4 substitutionReference
Envelope on the O5 atom (E0)Envelope on C7 (E1)H2,3-O-isopropylideneCH2NMe3(+), OTs(-)Dmochowska et al. (2006); Skorupa et al. (2004)
Twisted about the O5–C1 bond (0T1)Envelope on C7 (E0)H2,3-O-isopropylideneCH2NMe3(+), I(-)Dmochowska et al. (2006)
Envelope on the C1 atom (E1)Twisted about the O6-C2 bond(0T1)OCH32,3-O-isopropylideneCH2NMe3(+), OTs(-)this work
Envelope on the O5 atom (E0)Twisted about the O18-C20 bond (2T3)H2,3-O-isopropylideneCH2OTsDmochowska et al. (2009)
Envelope on the C3 atom (E3)Hcis-2,3-dihydroxyCH2OTsDmochowska et al. (2009)
Envelope on the C1 atom (E2)Htrans-2,3-dihydroxyCH2OTsDibrov et al. (2010)
Conformations of six selected compounds. Atom numbering schema taken from the original papers. Qualitative puckering descriptors (envelope, twisted) are the ones closest to the observed data. top
Conformation of the furanoic ringConformation of the dioxolane ringC1 substitutionC2–C3 substitutionC4 substitutionReference
Envelope on the O5 atom (E0)Envelope on C7 (E1)H2,3-O-isopropylideneCH2NMe3(+), OTs(-)Dmochowska et al. (2006); Skorupa et al. (2004)
Twisted about the O5–C1 bond (0T1)Envelope on C7 (E0)H2,3-O-isopropylideneCH2NMe3(+), I(-)Dmochowska et al. (2006)
Envelope on the C1 atom (E1)Twisted about the O6-C2 bond(0T1)OCH32,3-O-isopropylideneCH2NMe3(+), OTs(-)this work
Envelope on the O5 atom (E0)Twisted about the O18-C20 bond (2T3)H2,3-O-isopropylideneCH2OTsDmochowska et al. (2009)
Envelope on the C3 atom (E3)Hcis-2,3-dihydroxyCH2OTsDmochowska et al. (2009)
Envelope on the C1 atom (E2)Htrans-2,3-dihydroxyCH2OTsDibrov et al. (2010)
Acknowledgements top

This work was partially financed by grant DS/530–8451-D193–13. We thank Ms Iwona Rabczuk for some of the experimental work and M. Sc. Leszek Łobocki for measurements of mass spectra (MALDI TOF).

references
References top

Abel, T., Cohen, J. I., Engel, R., Filshtinskaya, M., Melkonian, A. & Melkonian, K. (2002). Carbohydr. Res. 337, 2495–2499.

Belalia, R., Grelier, S., Benaissa, M. & Coma, V. (2008). J. Agric. Food Chem. 56, 1582–1588.

Binks, B. P., Fletcher, P. D., Salama, I. E., Horsup, D. I. & Moore, J. A. (2011). Langmuir, 27, 469–473.

Blizzard, T. A., Kim, R. M., Morgan, J. D. II, Chang, J., Kohler, J., Kilburn, R., Chapman, K. & Hammond, M. L. (2002). Bioorg. Med. Chem. Lett. 12, 849–852.

Boethling, R. S. (1984). Water Res. 18, 1061–1076.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

Cross, J. & Singer, E. J. (1994). In Cationic Surfactants. New York: Marcel Dekker Inc.

Cruz-Guzman, M., Celis, R., Hermosin, M. C., Koskinen, W. C. & Cornejo, J. (2005). J. Agric. Food Chem. 53, 7502–7511.

Dibrov, S., Carnevali, M. & Hermann, T. (2010). Acta Cryst. E66, o3088.

Dmochowska, B., Piosik, J., Woziwodzka, A., Sikora, K., Wiśniewski, A. & Węgrzyn, G. (2011). J. Hazard. Mater. 193, 272–278.

Dmochowska, B., Skorupa, E., Pellowska-Januszek, L., Czarkowska, M., Sikorski, A. & Wiśniewski, A. (2006). Carbohydr. Res. 341, 1916–1921.

Dmochowska, B., Skorupa, E., Świtecka, P., Sikorski, A., Łącka, I., Milewski, S. & Wiśniewski, A. (2009). J. Carbohydr. Chem. 28, 222–233.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908–915.

Gosh, A. K. & Liu, W. (1996). J. Org. Chem. 61, 6175–6182.

Honda, T., Kato, M., Inoue, M., Shimamoto, T., Shima, K., Nakanishi, T., Yoshida, T. & Noguchi, T. (1988). J. Med. Chem. 31, 1295–1305.

Jones, G. (1984). Pyridines and their Benzo Derivatives in Comprehensive Heterocyclic Chemistry, edited by A. R. Katrizky & C. W. Rees, Vol. 2, Part 2A, pp. 395–510. Oxford, New York, Toronto, Sydney, Paris, Frankfurt: Pergamon Press.

Levinson, M. I. (1999). J. Surfact. Deterg. 2, 223–235.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

Maslov, M., Morozova, N., Chizhik, E., Rapoport, D., Ryabchikova, E., Zenkova, M. & Serebrennikova, G. (2010). Carbohydr. Res. 345, 2438–2449.

McDonnell, G. & Russell, A. D. (1999). Clin. Microbiol. Rev. 12, 147–179.

Obłąk, E. & Gamian, A. (2010). Adv. Hyg. Exp. Med. 64, 201–211.

Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

Pellowska-Januszek, L., Dmochowska, B., Skorupa, E., Chojnacki, J., Wojnowski, W. & Wiśniewski, A. (2004). Carbohydr. Res. 339, 1537–1544.

Rabea, E. I., Badawy, M. E., Stevens, C. V., Smagghe, G. & Steurbaut, W. (2003). Biomacromolecules, 4, 1457–1465.

Sairam, P., Puranik, R., Rao, B. S., Swamy, P. V. & Chandra, S. (2003). Carbohydr. Res. 338, 303–306.

Sajomsang, W., Tantayanon, S., Tangpasuthadol, V. & Daly, W. (2009). Carbohydr. Res. 344, 2502–2511.

Sarabia-Garcia, F. & Lopez-Herrera, F. J. (1996). Tetrahedron, 53, 4757–4768.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Singh, S., Bhadani, A., Kataria, H., Kaur, G. & Kamboj, R. (2009). Ind. Eng. Chem. Res. 48, 1673–1677.

Skorupa, E., Dmochowska, B., Pellowska-Januszek, L., Wojnowski, W., Chojnacki, J. & Wiśniewski, A. (2004). Carbohydr. Res. 339, 2355–2362.

Śliwa, W. (1996). In N-Substituted Salts of Pyridine and Related Compounds. Monograph. Częstochowa, Poland: WSP.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Thomas, M., Montenegro, D., Castaňo, A., Friedman, L., Leb, J., Huang, M. L., Rothman, L., Lee, H., Capodiferro, C., Ambinder, D., Cere, E., Galante, J., Rizzo, J., Melkonian, K. & Engel, R. (2009). Carbohydr. Res. 344, 1620–1627.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.