metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 7| July 2013| Pages m400-m401

Poly[di­methyl­ammonium [(μ2-benzene-1,2-di­carboxyl­ato-κ2O1:O3)[μ2-3-(pyri­din-4-yl)-1H-pyrazol-1-ido-κ2N1:N3]cuprate(II)]]

aDepartment of Chemistry, Hengshui University, Heng Shui 053000, People's Republic of China
*Correspondence e-mail: 281828541@qq.com

(Received 3 June 2013; accepted 12 June 2013; online 19 June 2013)

In the title complex, {(C2H8N)[Cu(C8H4O4)(C8H6N3)]}n, there are two CuII cations (each located on a centre of inversion), one benzene-1,2-di­carboxyl­ate dianion, one 3-(pyridin-4-yl)-1H-pyrazol-1-ide anion and one di­methyl­ammonium cation in the asymmetric unit. The di­methyl­ammonium cation was highly disordered and was treated with the SQUEEZE routine in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155]; the crystallographic data takes into account the presence of the cation. Each CuII cation exhibits a square-planar coordination geometry. A benzene-1,2-di­carboxyl­ate dianion bridges two CuII cations, building a linear chain along [001]. The chains are connected by 3-(pyridin-4-yl)-1H-pyrazol-1-ide anions, constructing a layer parallel to (101). The layers are assembled into a three-dimensional supra­molecular network through C—H⋯π inter­actions.

Related literature

For background to complexes derived from 4-(1H-pyrazol-3-yl)pyridine, see: Davies et al. (2005[Davies, G. M., Adams, H. & Ward, M. D. (2005). Acta Cryst. C61, m485-m487.]); Tan et al. (2011[Tan, Z.-D., Tan, F.-J., Tan, B. & Yi, Z.-W. (2011). Acta Cryst. E67, m1512.]); For background to complexes derived from benzene-1,2-di­carb­oxy­lic acid, see: Guo (2010[Guo, J.-H. (2010). Acta Cryst. E66, m1206.]); Yan et al. (2012[Yan, Y., Yu, W.-J. & Chen, J. (2012). Acta Cryst. E68, m129-m130.]).

[Scheme 1]

Experimental

Crystal data
  • (C2H8N)[Cu(C8H4O4)(C8H6N3)]

  • Mr = 417.91

  • Triclinic, [P \overline 1]

  • a = 8.0978 (16) Å

  • b = 9.7244 (19) Å

  • c = 11.694 (2) Å

  • α = 89.26 (3)°

  • β = 89.12 (3)°

  • γ = 89.64 (3)°

  • V = 920.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.22 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.21 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.759, Tmax = 0.784

  • 8051 measured reflections

  • 3236 independent reflections

  • 2486 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.124

  • S = 1.06

  • 3236 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N2,N3,C9–C11 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Cg1i 0.93 2.85 3.698 (5) 152
Symmetry code: (i) x, y+1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138, Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The immense research in coordination polymers is due to their potential applications and the diversity in topological architectures. The choice of organic linker is crucial for constructing coordination polymers. Polycarboxylate linkers and N-containing ligands are popular for building novel architectures. Among various polycarboxylate linkers, benzene-1,2-dicarboxylic acid (1,2-H2bdc) exhibits rich coordination modes to metal centers owing to its rigidity and polycarboxylate groups (Guo, 2010; Yan et al., 2012). On the other hand, among the N-containing ligands, 4-(1H-pyrazol-3-yl)pyridine (L) processes molecular recognition sites for C—H···π and π-π interactions to form interesting supramolecular structures (Davies et al., 2005; Tan et al., 2011). Herein, we report the synthesis and structure of a novel Cu(II) coordination polymer with 1,2-H2bdc and L.

As illustrated in Fig. 1, there are two types of CuII cations in the asymmetric unit. Cu(1) exhibits a square planar coordination sphere, defined by two N atoms from two pyrazole rings and two O atoms from two different carboxylate ligands. Cu(2) also shows a square planar coordination geometry with two N atoms and two O atoms. However, two N atoms come from the pyridine rings from L. Benzene-1,2-dicarboxylic acids adopt only a single µ2-(η1,η1) bis-monodentate coordination mode connecting two CuII ions and leads to a one-dimensional linear chain. The chains are connected by L to construct a two-dimensional layer (Fig. 2). The layers are further self-assembled into a three-dimensional supramolecular network through C—H···π interactions (Fig. 3 & Table 1).

Related literature top

For background to 4-(1H-pyrazol-3-yl)pyridine complexes, see: Davies et al. (2005); Tan et al. (2011); For background to benzene-1,2-dicarboxylic acid complexes, see: Guo (2010); Yan et al. (2012).

Experimental top

A mixture of copper nitrate (0.2 mmol), 4-(1H-pyrazol-3-yl)pyridine (0.2 mmol), benzene-1,2-dicarboxylic acid (0.2 mmol) were dissolved in a DMAC/Ethanol/H2O solvent mixture (5 ml, v:v:v = 1:1:1), and placed in a capped vial (10 ml), which was heated to 373 K for three days and then cooled to room temperature. The crystals obtained were washed with water and dried in air. Element analysis, calculated for C18H18CuN4O4: C 51.69, H 4.31, N 13.40%; found: C 51.74, H 4.24, N 13.44%.

Refinement top

Carbon-bound H atoms were placed at calculated positions and were treated as riding on the parent atoms with C—H = 0.93 Å, and with Uiso(H) = 1.2 Ueq(C). The dimethylammonium cation was highly disordered and was treated with the SQUEEZE routine (Spek, 2009); the reported crystallographic data takes into account the presence of the cation.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids; disordered cation omitted. [Symmetry codes: (i) 2 - x, 1 - y, 1 - z, (ii) 1 + x, y, z, (iii) 1 - x, 1 - y, - z, (iv) 2 - x, 1 - y, - z.]
[Figure 2] Fig. 2. A view of two dimensional layer of title compound; disordered cation omitted.
[Figure 3] Fig. 3. A view of the three-dimensional constructed by C—H···π; disordered cation omitted.
Poly[dimethylammonium [(µ2-benzene-1,2-dicarboxylato-κ2O1:O3)[µ2-3-(pyridin-4-yl)-1H-pyrazol-1-ido-κ2N1:N3]cuprate(II)]] top
Crystal data top
(C2H8N)[Cu(C8H4O4)(C8H6N3)]Z = 2
Mr = 417.91F(000) = 430
Triclinic, P1Dx = 1.507 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0978 (16) ÅCell parameters from 8598 reflections
b = 9.7244 (19) Åθ = 3.0–27.6°
c = 11.694 (2) ŵ = 1.22 mm1
α = 89.26 (3)°T = 293 K
β = 89.12 (3)°Block, blue
γ = 89.64 (3)°0.24 × 0.22 × 0.21 mm
V = 920.7 (3) Å3
Data collection top
Rigaku SCXmini
diffractometer
3236 independent reflections
Radiation source: fine-focus sealed tube2486 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.759, Tmax = 0.784k = 1111
8051 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0557P)2 + 0.9233P]
where P = (Fo2 + 2Fc2)/3
3236 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
(C2H8N)[Cu(C8H4O4)(C8H6N3)]γ = 89.64 (3)°
Mr = 417.91V = 920.7 (3) Å3
Triclinic, P1Z = 2
a = 8.0978 (16) ÅMo Kα radiation
b = 9.7244 (19) ŵ = 1.22 mm1
c = 11.694 (2) ÅT = 293 K
α = 89.26 (3)°0.24 × 0.22 × 0.21 mm
β = 89.12 (3)°
Data collection top
Rigaku SCXmini
diffractometer
3236 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2486 reflections with I > 2σ(I)
Tmin = 0.759, Tmax = 0.784Rint = 0.044
8051 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.06Δρmax = 0.50 e Å3
3236 reflectionsΔρmin = 0.30 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.00000.50000.50000.0276 (2)
Cu21.00000.50000.00000.0269 (2)
O10.9981 (3)0.6272 (3)0.3683 (2)0.0309 (6)
O20.8655 (4)0.7485 (3)0.4981 (3)0.0519 (9)
O30.8239 (3)0.5948 (3)0.1664 (2)0.0329 (6)
O41.0087 (3)0.6914 (3)0.0509 (2)0.0318 (6)
N10.1845 (4)0.4575 (3)0.1055 (3)0.0304 (8)
N20.7841 (4)0.4230 (3)0.4546 (3)0.0310 (8)
N30.7012 (4)0.4575 (3)0.3568 (3)0.0284 (7)
C10.9180 (5)0.7341 (4)0.3997 (3)0.0320 (9)
C20.8933 (5)0.8487 (4)0.3141 (3)0.0299 (9)
C30.8962 (5)0.8307 (4)0.1954 (3)0.0287 (9)
C40.9107 (5)0.6958 (4)0.1364 (3)0.0270 (8)
C50.8805 (5)0.9467 (4)0.1244 (4)0.0387 (10)
H50.88420.93620.04550.046*
C60.8600 (6)1.0754 (5)0.1688 (4)0.0504 (12)
H60.84881.15110.12000.061*
C70.8559 (7)1.0929 (5)0.2847 (4)0.0539 (13)
H70.84241.18030.31500.065*
C80.8719 (6)0.9800 (5)0.3561 (4)0.0445 (11)
H80.86830.99240.43490.053*
C90.6856 (5)0.3392 (4)0.5137 (3)0.0349 (10)
H90.71160.29920.58390.042*
C100.5388 (5)0.3190 (4)0.4571 (3)0.0357 (10)
H100.45020.26490.48120.043*
C110.5517 (5)0.3955 (4)0.3579 (3)0.0287 (9)
C120.4293 (4)0.4167 (4)0.2673 (3)0.0283 (9)
C130.2849 (5)0.3433 (5)0.2711 (4)0.0451 (12)
H130.26660.27810.32870.054*
C140.1682 (5)0.3670 (5)0.1896 (4)0.0447 (12)
H140.07150.31600.19390.054*
C150.3227 (6)0.5277 (6)0.1017 (4)0.0567 (14)
H150.33670.59350.04400.068*
C160.4478 (6)0.5087 (5)0.1790 (4)0.0566 (15)
H160.54500.55870.17100.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0263 (4)0.0308 (4)0.0260 (4)0.0010 (3)0.0127 (3)0.0035 (3)
Cu20.0247 (4)0.0338 (4)0.0226 (3)0.0005 (3)0.0098 (3)0.0011 (3)
O10.0306 (14)0.0326 (16)0.0298 (14)0.0011 (12)0.0102 (12)0.0046 (12)
O20.068 (2)0.055 (2)0.0314 (17)0.0063 (17)0.0068 (16)0.0069 (15)
O30.0355 (15)0.0350 (16)0.0283 (14)0.0081 (12)0.0066 (12)0.0024 (12)
O40.0318 (15)0.0367 (16)0.0271 (14)0.0033 (12)0.0019 (12)0.0018 (12)
N10.0264 (17)0.038 (2)0.0272 (17)0.0013 (14)0.0066 (14)0.0004 (15)
N20.0301 (18)0.037 (2)0.0261 (17)0.0010 (15)0.0137 (14)0.0061 (15)
N30.0259 (17)0.0328 (19)0.0269 (17)0.0009 (14)0.0125 (14)0.0000 (14)
C10.033 (2)0.037 (2)0.027 (2)0.0043 (18)0.0089 (18)0.0011 (18)
C20.033 (2)0.029 (2)0.028 (2)0.0001 (17)0.0050 (17)0.0006 (17)
C30.027 (2)0.032 (2)0.027 (2)0.0014 (16)0.0038 (16)0.0019 (17)
C40.0250 (19)0.032 (2)0.024 (2)0.0002 (17)0.0112 (17)0.0000 (16)
C50.045 (3)0.042 (3)0.029 (2)0.001 (2)0.0041 (19)0.0073 (19)
C60.070 (3)0.029 (3)0.052 (3)0.006 (2)0.000 (3)0.010 (2)
C70.081 (4)0.027 (2)0.054 (3)0.007 (2)0.001 (3)0.004 (2)
C80.059 (3)0.041 (3)0.033 (2)0.000 (2)0.005 (2)0.006 (2)
C90.036 (2)0.041 (3)0.028 (2)0.0007 (19)0.0116 (18)0.0113 (18)
C100.027 (2)0.047 (3)0.033 (2)0.0069 (18)0.0058 (18)0.0040 (19)
C110.024 (2)0.032 (2)0.030 (2)0.0009 (16)0.0063 (17)0.0014 (17)
C120.024 (2)0.036 (2)0.0245 (19)0.0001 (16)0.0068 (16)0.0030 (17)
C130.039 (3)0.062 (3)0.034 (2)0.014 (2)0.011 (2)0.019 (2)
C140.031 (2)0.062 (3)0.041 (3)0.016 (2)0.013 (2)0.015 (2)
C150.038 (3)0.076 (4)0.056 (3)0.016 (2)0.024 (2)0.036 (3)
C160.033 (2)0.073 (4)0.064 (3)0.025 (2)0.027 (2)0.036 (3)
Geometric parameters (Å, º) top
Cu1—O11.963 (3)C3—C41.494 (5)
Cu1—O1i1.963 (3)C5—C61.370 (6)
Cu1—N2i1.989 (3)C5—H50.9300
Cu1—N21.989 (3)C6—C71.368 (7)
Cu2—O41.964 (3)C6—H60.9300
Cu2—O4ii1.964 (3)C7—C81.378 (6)
Cu2—N1iii1.990 (3)C7—H70.9300
Cu2—N1iv1.990 (3)C8—H80.9300
O1—C11.276 (5)C9—C101.387 (6)
O2—C11.230 (5)C9—H90.9300
O3—C41.254 (4)C10—C111.373 (5)
O4—C41.268 (4)C10—H100.9300
N1—C151.315 (5)C11—C121.474 (5)
N1—C141.317 (5)C12—C161.365 (6)
N1—Cu2v1.990 (3)C12—C131.373 (6)
N2—C91.324 (5)C13—C141.369 (6)
N2—N31.372 (4)C13—H130.9300
N3—C111.355 (5)C14—H140.9300
C1—C21.503 (5)C15—C161.378 (6)
C2—C81.384 (6)C15—H150.9300
C2—C31.400 (5)C16—H160.9300
C3—C51.399 (5)
O1—Cu1—O1i180.000 (1)C3—C5—H5119.3
O1—Cu1—N2i89.29 (12)C7—C6—C5120.1 (4)
O1i—Cu1—N2i90.71 (12)C7—C6—H6119.9
O1—Cu1—N290.71 (12)C5—C6—H6119.9
O1i—Cu1—N289.29 (12)C6—C7—C8119.4 (4)
N2i—Cu1—N2180.00 (17)C6—C7—H7120.3
O4—Cu2—O4ii180.00 (14)C8—C7—H7120.3
O4—Cu2—N1iii88.12 (12)C7—C8—C2121.9 (4)
O4ii—Cu2—N1iii91.88 (12)C7—C8—H8119.1
O4—Cu2—N1iv91.88 (12)C2—C8—H8119.1
O4ii—Cu2—N1iv88.12 (12)N2—C9—C10111.0 (3)
N1iii—Cu2—N1iv180.00 (19)N2—C9—H9124.5
C1—O1—Cu1106.8 (2)C10—C9—H9124.5
C4—O4—Cu2104.6 (2)C11—C10—C9105.5 (3)
C15—N1—C14116.5 (3)C11—C10—H10127.3
C15—N1—Cu2v121.6 (3)C9—C10—H10127.3
C14—N1—Cu2v121.6 (3)N3—C11—C10107.7 (3)
C9—N2—N3106.2 (3)N3—C11—C12123.1 (3)
C9—N2—Cu1128.4 (3)C10—C11—C12129.1 (3)
N3—N2—Cu1125.2 (2)C16—C12—C13116.6 (4)
C11—N3—N2109.6 (3)C16—C12—C11123.9 (3)
O2—C1—O1122.5 (4)C13—C12—C11119.5 (3)
O2—C1—C2119.0 (4)C14—C13—C12119.5 (4)
O1—C1—C2118.5 (3)C14—C13—H13120.2
C8—C2—C3118.7 (4)C12—C13—H13120.2
C8—C2—C1117.3 (4)N1—C14—C13124.0 (4)
C3—C2—C1124.0 (3)N1—C14—H14118.0
C5—C3—C2118.6 (4)C13—C14—H14118.0
C5—C3—C4116.0 (3)N1—C15—C16123.3 (4)
C2—C3—C4125.4 (3)N1—C15—H15118.4
O3—C4—O4122.1 (4)C16—C15—H15118.4
O3—C4—C3121.5 (3)C12—C16—C15120.1 (4)
O4—C4—C3116.3 (3)C12—C16—H16120.0
C6—C5—C3121.3 (4)C15—C16—H16120.0
C6—C5—H5119.3
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+1, z; (iii) x+1, y, z; (iv) x+1, y+1, z; (v) x1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N2,N3,C9–C11 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···Cg1vi0.932.853.698 (5)152
Symmetry code: (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula(C2H8N)[Cu(C8H4O4)(C8H6N3)]
Mr417.91
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.0978 (16), 9.7244 (19), 11.694 (2)
α, β, γ (°)89.26 (3), 89.12 (3), 89.64 (3)
V3)920.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.22
Crystal size (mm)0.24 × 0.22 × 0.21
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.759, 0.784
No. of measured, independent and
observed [I > 2σ(I)] reflections
8051, 3236, 2486
Rint0.044
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.124, 1.06
No. of reflections3236
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.30

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N2,N3,C9–C11 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···Cg1i0.932.853.698 (5)152
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The author acknowledges Hengshui University for supporting this work.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationDavies, G. M., Adams, H. & Ward, M. D. (2005). Acta Cryst. C61, m485–m487.  Web of Science CSD CrossRef CAS IUCr Journals
First citationGuo, J.-H. (2010). Acta Cryst. E66, m1206.  Web of Science CSD CrossRef IUCr Journals
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138, Oak Ridge National Laboratory, Tennessee, USA.
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationTan, Z.-D., Tan, F.-J., Tan, B. & Yi, Z.-W. (2011). Acta Cryst. E67, m1512.  Web of Science CSD CrossRef IUCr Journals
First citationYan, Y., Yu, W.-J. & Chen, J. (2012). Acta Cryst. E68, m129–m130.  Web of Science CSD CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 7| July 2013| Pages m400-m401
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds