Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Chlorido{1-[(dimethylamino)methyl]ferrocenyl- $\kappa^2 C^2$,N}(triphenylstibine- κSb)palladium(II)

Diego Pérez,^a Pankaj Sharma,^a* Manju Sharma^b and Simón Hernández^a

^aInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n Ciudad Universitaria, 04510, México D.F., México, and ^bIngeniería Bioquímica, Instituto Tecnológico Superior de Atlixco, Atlixco, Puebla, México Correspondence e-mail: pankajsh@unam.mx

Received 23 May 2013; accepted 31 May 2013

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.007 Å; R factor = 0.032; wR factor = 0.063; data-to-parameter ratio = 15.2.

In the title compound, [FePdCl(C_5H_5)($C_8H_{11}N$)($C_{18}H_{15}Sb$)], obtained by reaction of diphenyl(*N*,*N*-dimethylaminomethyl-ferrocenyl)stibine with sodium tetrachloridopalladate(II) in acetone, the Pd^{II} atom is coordinated in a slightly distorted square-planar geometry by a C atom of the ferrocenyl ring, and by N, Cl and Sb atoms. The Sb and N atoms are *trans* to each other.

Related literature

For the use of 1,2-disubstituted ferrocenylphosphines as catalytic precursors, see: Sokolov *et al.* (2005); Zirakzadeh *et al.* (2012). For Pd—Sb bond lengths in related compounds, see: Mentes & Fawcett (2005).

Experimental

Crystal data

FePdCl(C ₅ H ₅)(C ₈ H ₁₁ N)-	$\beta = 92.984 \ (1)^{\circ}$
$(C_{18}H_{15}Sb)]$	V = 2818.1 (3) Å ³
$M_r = 737.02$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 10.3138 (6) Å	$\mu = 2.21 \text{ mm}^{-1}$
p = 19.8865 (12) Å	$T = 291 { m K}$
c = 13.7584 (9) Å	$0.36 \times 0.12 \times 0.10 \text{ mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: analytical (*SADABS*; Bruker, 2007) $T_{min} = 0.490, T_{max} = 0.797$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	327 parameters
$wR(F^2) = 0.063$	H-atom parameters constrained
S = 0.93	$\Delta \rho_{\rm max} = 0.77 \ {\rm e} \ {\rm \AA}^{-3}$
4963 reflections	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

23494 measured reflections

 $R_{\rm int} = 0.048$

5158 independent reflections

4107 reflections with $I > 2\sigma(I)$

Table 1 Selected bond lengths (Å).

	e ()		
Sb1-C14	2.127 (4)	Pd1-C1	1.973 (4)
Sb1-C20	2.120 (4)	Pd1-Cl1	2.3952 (10)
Sb1-C26	2.119 (4)	Pd1-N1	2.174 (3)
Sb1-Pd1	2.4853 (4)		

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank the Dirección General de Asuntos del Personal Académico-UNAM project No. IN-223013 for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VN2072).

References

- Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Mentes, A. & Fawcett, J. (2005). Inorg. Chim. Acta. C358, 1279-1283.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sokolov, M. N., Chubarova, E. V., Hernández-Molina, R., Clausen, M., Naumov, D., Vincent, C., Lusar, R. & Vladimir, P. (2005). Eur. J. Inorg. Chem. 11, 2139–2146.
- Zirakzadeh, A., Schuecker, R., Gorgas, N., Mereiter, K., Spindler, F. & Weissensteiner, W. (2012). Organometallics, 31, 4241–4250.

supporting information

Acta Cryst. (2013). E69, m372 [https://doi.org/10.1107/S1600536813015109] Chlorido{1-[(dimethylamino)methyl]ferrocenyl-κ²C², N}(triphenylstibineκSb)palladium(II)

Diego Pérez, Pankaj Sharma, Manju Sharma and Simón Hernández

S1. Comment

1,2-disubstituted ferrocenylphosphines are used as catalytic precursors (Sokolov *et al.*, 2005; Zirakzadeh *et al.*, 2012). In an attempt to synthesize *cis*-dichloro[diphenyl(2-*N*,*N*-dimethylaminomethyl ferrocenyl)-stibino-N,Sb)]palladium(II), [PdCl(C₁₀H₈Fe)(C₃H₈N)(C₁₈H₁₅Sb)] was obtained. This paper describes the crystal structure of a new compound *viz*. chloro-(2-*N*,*N*-dimethylaminomethylferrocenyl)-(triphenylstibino) palladium (II), (Fig. 1), which was grown from CHCl₃ and hexane at room temperature. In the crystal structure, palladium is in a slightly distorted square-planar environment bound to a chlorine, the antimony, the nitrogen and the C(1) atom of the ferocenyl unit. The compound contains a bicyclic system, which is formed by the substituted pentagonal ring of the ferrocenyl fragment and a five-membered palladacycle which has an envelope-like conformation. The Pd—Sb bond length in this compound is 2.4853 (4) Å which compares well with the literature values for similar complexes of palladium (Mentes & Fawcett, 2005). The *cis* angles at Pd are close to the expected value of 90°, with the most noticeable distortion being the N—Pd—Cl angle of 93.71 (7)°, as a result of chelation (Fig. 1). The distance between the Fe and the Pd is 3.4836 (7)° for this compound, thus suggesting that there is interaction between the two metals. The two pentagonal rings of the ferrocenyl moiety are nearly parallel (tilt angle 1.74°).

S2. Experimental

The title compound was obtained as follows: a solution of sodium tetrachloropalladate (0.294 g, 1 mmol) in acetonewater mixture (5 ml, 50–50%) is added to a solution of diphenyl(N,N-dimethyl aminomethylferrocenyl)stibine (0.519 g, 1 mmol) in acetone(10 ml). The mixture was stirred overnight. A red powder was obtained, which after recrystallization from a chloroform-hexane solvent mixture afforded chloro-(2-N,N-dimethylaminomethylferrocenyl)(triphenylstibino) palladium (II) as red crystals in 40% yield.

S3. Refinement

The H-atoms were placed geometrically (C—H = 0.93–0.98 Å), and refined using a riding model with $U_{iso}(H) = 1.2U_{eq}$ of the carrier atom.

Figure 1

The title molecule with numbering scheme. The displacement ellipsoids are shown at the 50% probability level.

Chlorido{1-[(dimethylamino)methyl]ferrocenyl- $\kappa^2 C^1$, N}(triphenylstibine- κSb)palladium(II)

Crystal data

$[FePdCl(C_5H_5)(C_8H_{11}N)(C_{18}H_{15}Sb)]$	F(000) = 1456
$M_r = 737.02$	$D_{\rm x} = 1.737 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 10.3138 (6) Å	Cell parameters from 5485 reflections
b = 19.8865 (12) Å	$\theta = 2.2 - 30.8^{\circ}$
c = 13.7584 (9) Å	$\mu = 2.21 \text{ mm}^{-1}$
$\beta = 92.984 \ (1)^{\circ}$	T = 291 K
V = 2818.1 (3) Å ³	Prism, red
Z = 4	$0.36 \times 0.12 \times 0.10 \text{ mm}$
Data collection	
Bruker SMART APEX CCD area-detector	23494 measured reflections

diffractometer	5158 independent reflections
Radiation source: fine-focus sealed tube	4107 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.048$
Detector resolution: 0.83 pixels mm ⁻¹	$\theta_{\text{max}} = 25.4^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
ω scans	$h = -12 \rightarrow 12$
Absorption correction: analytical	$k = -23 \rightarrow 23$
(SADABS; Bruker, 2007)	$l = -16 \rightarrow 16$
$T_{\min} = 0.490, \ T_{\max} = 0.797$	

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.032$	H-atom parameters constrained
$wR(F^2) = 0.063$	$w = 1/[\sigma^2(F_o^2) + (0.027P)^2]$
S = 0.93	where $P = (F_o^2 + 2F_c^2)/3$
4963 reflections	$(\Delta/\sigma)_{max} = 0.002$
327 parameters	$\Delta\rho_{max} = 0.77$ e Å ⁻³
0 restraints	$\Delta\rho_{max} = -0.21$ e Å ⁻³
0 restraints	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Sb1	0.76605 (2)	0.06765 (2)	0.80847 (2)	0.03930 (8)	
Pd1	0.63076 (3)	0.12392 (2)	0.67766 (2)	0.03893 (9)	
Fe1	0.83892 (6)	0.11299 (3)	0.48685 (4)	0.04535 (15)	
Cl1	0.55085 (11)	0.20492 (5)	0.78865 (8)	0.0617 (3)	
N1	0.5010 (3)	0.15681 (15)	0.5573 (2)	0.0436 (8)	
C1	0.7077 (4)	0.06914 (18)	0.5758 (3)	0.0404 (9)	
C2	0.6501 (4)	0.08030 (19)	0.4804 (3)	0.0468 (10)	
C3	0.7239 (4)	0.0457 (2)	0.4126 (3)	0.0539 (11)	
H3	0.7062	0.0447	0.3419	0.065*	
C4	0.8258 (4)	0.01262 (19)	0.4639 (3)	0.0525 (11)	
H4	0.8918	-0.0156	0.4353	0.063*	
C5	0.8176 (4)	0.02703 (18)	0.5641 (3)	0.0442 (10)	
H5	0.8773	0.0107	0.6166	0.053*	
C6	0.8900 (5)	0.2057 (2)	0.5419 (4)	0.0734 (14)	
H6	0.8525	0.2275	0.5978	0.088*	
C7	0.8440 (5)	0.2115 (2)	0.4449 (4)	0.0740 (15)	
H7	0.7699	0.2386	0.4204	0.089*	
C8	0.9262 (5)	0.1721 (2)	0.3882 (3)	0.0718 (14)	
H8	0.9191	0.1669	0.3173	0.086*	
C9	1.0205 (4)	0.1429 (2)	0.4515 (4)	0.0644 (13)	
H9	1.0911	0.1133	0.4329	0.077*	
C10	0.9961 (5)	0.1630 (2)	0.5460 (4)	0.0690 (13)	
H10	1.0469	0.1499	0.6052	0.083*	
C11	0.5280 (4)	0.1194 (2)	0.4671 (3)	0.0677 (13)	
H11A	0.4564	0.0892	0.4506	0.081*	
H11B	0.5352	0.1509	0.4138	0.081*	
C12	0.5130 (5)	0.2297 (2)	0.5424 (3)	0.0702 (13)	

H12A	0.5993	0.2400	0.5240	0.105*
H12B	0.4962	0.2528	0.6017	0.105*
H12C	0.4514	0.2438	0.4918	0.105*
C13	0.3667 (4)	0.1431 (3)	0.5849 (4)	0.0756 (14)
H13A	0.3515	0.1652	0.6452	0.113*
H13B	0.3550	0.0955	0.5924	0.113*
H13C	0.3064	0.1596	0.5350	0.113*
C14	0.7714 (4)	-0.03917 (18)	0.8157 (3)	0.0402 (9)
C15	0.8309 (4)	-0.0706 (2)	0.8955 (3)	0.0578 (12)
H15	0.8687	-0.0448	0.9457	0.069*
C16	0.8350 (5)	-0.1400 (2)	0.9019 (3)	0.0670 (13)
H16	0.8766	-0.1608	0.9554	0.080*
C17	0.7766 (4)	-0.1780 (2)	0.8279 (3)	0.0637 (13)
H17	0.7804	-0.2247	0.8311	0.076*
C18	0.7138 (4)	-0.1479 (2)	0.7506 (3)	0.0611 (12)
H18	0.6717	-0.1739	0.7024	0.073*
C19	0.7122 (4)	-0.07832 (19)	0.7435 (3)	0.0498 (10)
H19	0.6709	-0.0579	0.6895	0.060*
C20	0.7170 (4)	0.08795 (19)	0.9533 (3)	0.0446 (10)
C21	0.8071 (4)	0.1086 (2)	1.0237 (3)	0.0597 (12)
H21	0.8938	0.1127	1.0092	0.072*
C22	0.7691 (7)	0.1234 (2)	1.1168 (3)	0.0816 (16)
H22	0.8306	0.1384	1.1637	0.098*
C23	0.6431 (7)	0.1163 (3)	1.1405 (4)	0.0837 (18)
H23	0.6187	0.1259	1.2031	0.100*
C24	0.5537 (6)	0.0950 (3)	1.0711 (4)	0.0837 (16)
H24	0.4677	0.0896	1.0868	0.100*
C25	0.5888 (4)	0.0814 (2)	0.9785 (3)	0.0634 (12)
H25	0.5260	0.0675	0.9318	0.076*
C26	0.9668 (4)	0.09096 (19)	0.8159 (3)	0.0405 (9)
C27	1.0016 (4)	0.1584 (2)	0.8228 (3)	0.0579 (11)
H27	0.9374	0.1913	0.8220	0.069*
C28	1.1312 (5)	0.1770 (2)	0.8310 (3)	0.0716 (14)
H28	1.1536	0.2222	0.8363	0.086*
C29	1.2254 (5)	0.1295 (3)	0.8311 (3)	0.0741 (14)
H29	1.3123	0.1422	0.8366	0.089*
C30	1.1933 (4)	0.0630(3)	0.8233 (4)	0.0746 (14)
H30	1.2584	0.0306	0.8236	0.090*
C31	1.0645 (4)	0.0436 (2)	0.8149 (3)	0.0592 (12)
H31	1.0435	-0.0017	0.8086	0.071*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sb1	0.03905 (15)	0.04112 (15)	0.03734 (15)	0.00225 (12)	-0.00182 (11)	-0.00163 (12)
Pd1	0.03648 (17)	0.04065 (17)	0.03923 (17)	0.00368 (14)	-0.00218 (13)	-0.00211 (14)
Fe1	0.0529 (4)	0.0395 (3)	0.0439 (3)	0.0023 (3)	0.0053 (3)	0.0017 (3)
Cl1	0.0681 (7)	0.0604 (7)	0.0565 (7)	0.0136 (6)	0.0026 (6)	-0.0131 (5)

Acta Cryst. (2013). E**69**, m372

supporting information

N1	0.0372 (18)	0.0446 (19)	0.048 (2)	0.0038 (15)	-0.0076 (15)	0.0045 (16)
C1	0.044 (2)	0.040 (2)	0.038 (2)	-0.0006 (18)	0.0023 (18)	-0.0011 (18)
C2	0.052 (3)	0.042 (2)	0.045 (2)	0.002 (2)	-0.008 (2)	-0.0012 (19)
C3	0.070 (3)	0.050 (3)	0.042 (2)	-0.003 (2)	-0.004 (2)	-0.011 (2)
C4	0.063 (3)	0.036 (2)	0.059 (3)	0.007 (2)	0.013 (2)	-0.001 (2)
C5	0.051 (2)	0.037 (2)	0.045 (2)	0.0072 (19)	0.0011 (19)	0.0036 (18)
C6	0.084 (4)	0.047 (3)	0.092 (4)	-0.013 (3)	0.026 (3)	-0.011 (3)
C7	0.067 (3)	0.044 (3)	0.112 (5)	0.000 (2)	0.014 (3)	0.027 (3)
C8	0.094 (4)	0.067 (3)	0.055 (3)	-0.019 (3)	0.010 (3)	0.019 (3)
C9	0.059 (3)	0.056 (3)	0.080 (4)	-0.004 (2)	0.021 (3)	0.005 (3)
C10	0.070 (3)	0.063 (3)	0.075 (4)	-0.018 (3)	0.004 (3)	-0.004 (3)
C11	0.063 (3)	0.084 (3)	0.054 (3)	0.018 (3)	-0.017 (2)	-0.014 (3)
C12	0.084 (4)	0.059 (3)	0.067 (3)	0.003 (3)	-0.006 (3)	0.016 (2)
C13	0.040 (3)	0.098 (4)	0.088 (4)	-0.007 (3)	-0.011 (2)	0.006 (3)
C14	0.042 (2)	0.041 (2)	0.038 (2)	-0.0042 (19)	0.0008 (18)	0.0003 (18)
C15	0.069 (3)	0.050 (3)	0.053 (3)	-0.006 (2)	-0.017 (2)	0.000 (2)
C16	0.079 (3)	0.055 (3)	0.064 (3)	-0.003 (3)	-0.019 (3)	0.017 (2)
C17	0.078 (3)	0.041 (2)	0.073 (3)	-0.003 (2)	0.011 (3)	0.006 (2)
C18	0.080 (3)	0.047 (3)	0.055 (3)	-0.008 (2)	-0.007 (2)	-0.005 (2)
C19	0.059 (3)	0.050 (3)	0.040 (2)	-0.007 (2)	-0.005 (2)	0.004 (2)
C20	0.052 (3)	0.040 (2)	0.042 (2)	0.007 (2)	0.001 (2)	-0.0006 (18)
C21	0.062 (3)	0.069 (3)	0.048 (3)	0.000 (2)	-0.002 (2)	0.001 (2)
C22	0.129 (5)	0.073 (4)	0.041 (3)	0.006 (4)	-0.015 (3)	-0.006 (3)
C23	0.131 (6)	0.072 (4)	0.050 (3)	0.031 (4)	0.024 (4)	0.011 (3)
C24	0.090 (4)	0.082 (4)	0.083 (4)	0.017 (3)	0.044 (4)	0.013 (3)
C25	0.057 (3)	0.073 (3)	0.061 (3)	0.002 (2)	0.006 (2)	0.001 (2)
C26	0.042 (2)	0.046 (2)	0.033 (2)	-0.005 (2)	0.0040 (17)	0.0003 (18)
C27	0.059 (3)	0.050 (3)	0.065 (3)	-0.002 (2)	0.008 (2)	0.000 (2)
C28	0.075 (4)	0.060 (3)	0.080 (4)	-0.029 (3)	0.006 (3)	0.002 (3)
C29	0.052 (3)	0.106 (4)	0.065 (3)	-0.021 (3)	0.008 (2)	-0.001 (3)
C30	0.044 (3)	0.086 (4)	0.094 (4)	0.010 (3)	0.005 (3)	-0.006 (3)
C31	0.050 (3)	0.053 (3)	0.074 (3)	0.000 (2)	0.002 (2)	-0.003 (2)

Geometric parameters (Å, °)

Sb1—C14	2.127 (4)	C11—H11B	0.9700
Sb1-C20	2.120 (4)	C12—H12A	0.9600
Sb1—C26	2.119 (4)	C12—H12B	0.9600
Sb1—Pd1	2.4853 (4)	C12—H12C	0.9600
Pd1—C1	1.973 (4)	C13—H13A	0.9600
Pd1—Cl1	2.3952 (10)	C13—H13B	0.9600
Pd1—N1	2.174 (3)	C13—H13C	0.9600
Fe1—C4	2.024 (4)	C14—C15	1.378 (5)
Fe1—C3	2.029 (4)	C14—C19	1.380 (5)
Fe1—C5	2.031 (4)	C15—C16	1.383 (6)
Fe1—C10	2.035 (5)	C15—H15	0.9300
Fe1—C8	2.040 (4)	C16—C17	1.380 (6)
Fe1—C7	2.044 (4)	C16—H16	0.9300

supporting information

Fe1—C9	2.048 (4)	C17—C18	1.356 (6)
Fe1—C2	2.051 (4)	C17—H17	0.9300
Fe1—C6	2.051 (4)	C18—C19	1.387 (5)
Fe1—C1	2.065 (4)	C18—H18	0.9300
N1-C12	1.470 (5)	C19—H19	0.9300
N1—C13	1.481 (5)	C20—C21	1.370 (5)
N1-C11	1.485 (5)	C20—C25	1.391 (6)
C1—C5	1.426 (5)	C21—C22	1.391 (6)
C1—C2	1.429 (5)	C21—H21	0.9300
C2-C3	1.413 (5)	C22—C23	1.363 (7)
C2C11	1 484 (5)	C22—H22	0.9300
C3-C4	1.101(5) 1 400(5)	C_{23} C_{23} C_{24}	1 360 (7)
С3—Н3	0.9800	C23—H23	0.9300
C4—C5	1.414(5)	$C_{23} = 1123$ $C_{24} = C_{25}$	1 370 (6)
	0.0800	C24 C23	0.9300
C5 H5	0.9800	$C_{24} = 1124$ C ₂₅ H ₂₅	0.9300
C_{5}	1.384(6)	$C_{25} = 1125$	1 280 (5)
C_{0}	1.304(0)	$C_{20} = C_{31}$	1.300(3)
	1.398 (7)	$C_{20} - C_{27}$	1.391 (5)
	0.9800	$C_{2}/-C_{2}$	1.385 (0)
C/C8	1.418 (6)	C2/—H2/	0.9300
С/—Н/	0.9800	$C_{28} = C_{29}$	1.356 (6)
C8—C9	1.398 (6)	C28—H28	0.9300
С8—Н8	0.9800	C29—C30	1.366 (6)
C9—C10	1.395 (6)	C29—H29	0.9300
С9—Н9	0.9800	C30—C31	1.382 (6)
C10—H10	0.9800	С30—Н30	0.9300
C11—H11A	0.9700	C31—H31	0.9300
C26—Sb1—C20	101.15 (15)	Fe1—C6—H6	125.7
C26—Sb1—C14	101.14 (14)	C6—C7—C8	107.3 (5)
C20-Sb1-C14	98.81 (14)	C6—C7—Fe1	70.3 (3)
C26—Sb1—Pd1	116.53 (10)	C8—C7—Fe1	69.5 (2)
C20—Sb1—Pd1	116.27 (10)	С6—С7—Н7	126.4
C14—Sb1—Pd1	119.72 (10)	C8—C7—H7	126.4
C1—Pd1—N1	83.09 (14)	Fe1—C7—H7	126.4
C1—Pd1—Cl1	171.20 (11)	C9—C8—C7	107.7 (4)
N1—Pd1—Cl1	93.71 (9)	C9—C8—Fe1	70.3 (3)
C1—Pd1—Sb1	91.96 (11)	C7—C8—Fe1	69.9 (3)
N1—Pd1—Sb1	170.67 (8)	С9—С8—Н8	126.2
Cl1—Pd1—Sb1	92.29 (3)	C7—C8—H8	126.2
C4—Fe1—C3	40.42 (15)	Fe1—C8—H8	126.2
C4—Fe1—C5	40.83 (14)	C10—C9—C8	107.9 (4)
C3—Fe1—C5	68.41 (16)	C10—C9—Fe1	69 5 (3)
C4—Fe1—C10	126 1 (2)	C8-C9-Fe1	69 7 (3)
C3—Fe1—C10	163.0(2)	C10-C9-H9	126.0
C5—Fe1—C10	107.91 (18)	С8—С9—Н9	126.0
C4—Fe1—C8	110 50 (10)	Fe1-C9-H9	126.0
C3—Fe1—C8	108 15 (18)	C6-C10-C9	108 6 (5)
	100.15 (10)		100.0 (3)

C5—Fe1—C8	153.73 (19)	C6C10Fe1	70.8 (3)
C10—Fe1—C8	67.3 (2)	C9-C10-Fe1	70.5 (3)
C4—Fe1—C7	154.6 (2)	C6C10H10	125.7
C3—Fe1—C7	120.8 (2)	С9—С10—Н10	125.7
C5—Fe1—C7	163.7 (2)	Fe1—C10—H10	125.7
C10—Fe1—C7	67.2 (2)	C2-C11-N1	110.7 (3)
C8—Fe1—C7	40.63 (18)	C2—C11—H11A	109.5
C4—Fe1—C9	107.67 (17)	N1—C11—H11A	109.5
C3—Fe1—C9	126.17 (18)	C2—C11—H11B	109.5
C5—Fe1—C9	119.59 (18)	N1—C11—H11B	109.5
C10—Fe1—C9	39.96 (17)	H11A—C11—H11B	108.1
C8—Fe1—C9	40.01 (18)	N1—C12—H12A	109.5
C7—Fe1—C9	67.51 (19)	N1—C12—H12B	109.5
C4—Fe1—C2	67.99 (16)	H12A—C12—H12B	109.5
C3—Fe1—C2	40.53 (15)	N1—C12—H12C	109.5
C5—Fe1—C2	68.11 (15)	H12A—C12—H12C	109.5
C10—Fe1—C2	155.11 (18)	H12B-C12-H12C	109.5
C8—Fe1—C2	127 22 (19)	N1—C13—H13A	109.5
C7—Fe1—C2	109.27 (18)	N1—C13—H13B	109.5
C9—Fe1—C2	163 79 (19)	H13A—C13—H13B	109.5
C4—Fe1—C6	163.2(2)	N1—C13—H13C	109.5
C_3 —Fe1—C6	155.6 (2)	H13A—C13—H13C	109.5
C5—Fe1—C6	126.6 (2)	H13B— $C13$ — $H13C$	109.5
C10—Fe1—C6	39.61 (18)	$C_{15} - C_{14} - C_{19}$	1187(4)
C8—Fe1—C6	67 3 (2)	C15 - C14 - Sb1	110.7(1) 119.9(3)
C7—Fe1—C6	39.92 (19)	C19—C14—Sb1	121.4(3)
C9—Fe1—C6	66 82 (19)	C14-C15-C16	1209(4)
C_2 —Fe1—C6	121.72 (19)	C14—C15—H15	119.5
C4—Fe1—C1	68.63 (15)	C16—C15—H15	119.5
C_3 —Fe1—C1	68.64 (16)	C17 - C16 - C15	119.2 (4)
C5—Fe1—C1	40.73 (14)	C17—C16—H16	120.4
C10—Fe1—C1	120.16 (17)	C15—C16—H16	120.4
C8—Fe1—C1	164.44 (19)	C18—C17—C16	120.6 (4)
C7—Fe1—C1	126.83 (18)	C18—C17—H17	119.7
C9—Fe1—C1	154.07 (18)	С16—С17—Н17	119.7
C2—Fe1—C1	40.64 (14)	C17—C18—C19	119.9 (4)
C6—Fe1—C1	108.92 (17)	C17—C18—H18	120.0
C12—N1—C13	107.7 (3)	C19—C18—H18	120.0
C12—N1—C11	110.8 (3)	C14—C19—C18	120.6 (4)
C13—N1—C11	109.9 (3)	C14—C19—H19	119.7
C12—N1—Pd1	110.5 (2)	С18—С19—Н19	119.7
C13—N1—Pd1	107.2 (2)	C21—C20—C25	118.0 (4)
C11—N1—Pd1	110.6 (2)	C21—C20—Sb1	122.4 (3)
C5—C1—C2	106.4 (3)	C25—C20—Sb1	119.5 (3)
C5—C1—Pd1	139.1 (3)	C20—C21—C22	120.2 (5)
C2-C1-Pd1	113.8 (3)	C20—C21—H21	119.9
C5-C1-Fe1	68.3 (2)	C22—C21—H21	119.9
C2C1Fe1	69.1 (2)	C23—C22—C21	121.0 (5)

Pd1—C1—Fe1	119.20 (17)	C23—C22—H22	119.5
C3—C2—C1	108.6 (3)	C21—C22—H22	119.5
C3—C2—C11	131.0 (4)	C24—C23—C22	119.0 (5)
C1—C2—C11	120.3 (4)	С24—С23—Н23	120.5
C3—C2—Fe1	68.9 (2)	С22—С23—Н23	120.5
C1-C2-Fe1	70.2 (2)	C23—C24—C25	120.8 (5)
C11—C2—Fe1	129.6 (3)	C23—C24—H24	119.6
C4-C3-C2	108.2(4)	C25—C24—H24	119.6
C4-C3-Fe1	69.6(2)	C_{24} C_{25} C_{20}	120.9(5)
C^2 C^3 Fe1	70.6(2)	$C_{24} = C_{25} = C_{26}$	110.5
$C_2 = C_3 = 1C_1$	125.0	$C_{24} = C_{25} = H_{25}$	119.5
$C_4 = C_3 = H_3$	125.9	$C_{20} = C_{23} = H_{23}$	119.3
	125.9	$C_{31} = C_{20} = C_{27}$	118.2 (4)
Fel—C3—H3	125.9	C31—C26—Sb1	124.2 (3)
C3—C4—C5	108.3 (4)	C27—C26—Sb1	117.5 (3)
C3—C4—Fe1	70.0 (2)	C28—C27—C26	120.5 (4)
C5—C4—Fe1	69.8 (2)	С28—С27—Н27	119.8
C3—C4—H4	125.8	С26—С27—Н27	119.8
C5—C4—H4	125.8	C29—C28—C27	120.2 (4)
Fe1—C4—H4	125.8	C29—C28—H28	119.9
C4—C5—C1	108.5 (3)	C27—C28—H28	119.9
C4—C5—Fe1	69.3 (2)	C28—C29—C30	120.3 (5)
C1C5Fe1	70.9 (2)	C28—C29—H29	119.9
С4—С5—Н5	125.7	С30—С29—Н29	119.9
C1—C5—H5	125.7	C29—C30—C31	120 3 (5)
Fe1 - C5 - H5	125.7	$C_{29} = C_{30} = H_{30}$	119.9
$C_{10} - C_{6} - C_{7}$	123.7 108.5(5)	C_{31} C_{30} H_{30}	119.9
$C_{10} = C_{0} = C_{1}$	60 5 (3)	$C_{26} = C_{21} = C_{20}$	119.9
$C7 C6 E_{2}$	60.8(3)	$C_{20} = C_{31} = C_{30}$	120.0 (4)
	125.7	$C_{20} = C_{21} = H_{21}$	119.7
C10 - C0 - H0	125.7	Сзо—Сз1—пз1	119.7
С/—Сб—Нб	125.7		
C5—C1—C2—C3	-0.1 (4)	C7-C6-C10-Fe1	-59.0 (3)
Pd1-C1-C2-C3	172.1 (3)	C8—C9—C10—C6	-1.6(5)
Fe1—C1—C2—C3	58.4 (3)	Fe1—C9—C10—C6	-60.9 (3)
C5-C1-C2-C11	176.5 (4)	C8-C9-C10-Fe1	59.3 (3)
Pd1—C1—C2—C11	-11.3 (5)	C3—C2—C11—N1	-169.5 (4)
Fe1—C1—C2—C11	-125.0(4)	C1—C2—C11—N1	14.8 (6)
C5-C1-C2-Fe1	-58.4 (2)	Fe1—C2—C11—N1	-73.8(5)
Pd1-C1-C2-Fe1	113.7 (2)	C12 - N1 - C11 - C2	112.3 (4)
C1 - C2 - C3 - C4	0.5 (5)	C_{13} N1 $-C_{11}$ $-C_{2}$	-1288(4)
$C_{11} = C_{2} = C_{3} = C_{4}$	-1756(4)	Pd1N1C11C2	-10.6(4)
$E_{\text{Pl}} = C_2 = C_3 = C_4$	50 7 (3)	$C_{10} = C_{14} = C_{15} = C_{16}$	21(6)
$C_1 = C_2 = C_3 = C_4$	-50.2(3)	C12 - C14 - C15 - C16	2.1(0)
$C_1 = C_2 = C_3 = 1$	124.7(5)	$C_{14} = C_{15} = C_{16} = C_{10}$	-11(7)
$C_{11} - C_{2} - C_{3} - Fe_{1}$	124.7(3)	C14 - C13 - C10 - C17	1.1(/) 1.2(7)
$C_2 - C_3 - C_4 - C_3$	-0.8(3)	$C_{13} - C_{10} - C_{17} - C_{18} - C_{10}$	-1.2(7)
$re1 - U_3 - U_4 - U_3$	39.3 (3) (0.2 (2)	C10 - C17 - C10 - C19	2.0(/)
C2—C3—C4—Fel	-60.3 (3)	C15—C14—C19—C18	-0.7 (6)
C3—C4—C5—C1	0.8 (4)	Sb1—C14—C19—C18	-178.3(3)

Fe1—C4—C5—C1	60.3 (3)	C17—C18—C19—C14	-1.6 (7)
C3—C4—C5—Fe1	-59.6 (3)	C25—C20—C21—C22	-1.1 (6)
C2-C1-C5-C4	-0.4 (4)	Sb1—C20—C21—C22	177.9 (3)
Pd1-C1-C5-C4	-169.4 (3)	C20—C21—C22—C23	1.5 (7)
Fe1—C1—C5—C4	-59.4 (3)	C21—C22—C23—C24	-0.6 (8)
C2-C1-C5-Fe1	58.9 (3)	C22—C23—C24—C25	-0.6 (8)
Pd1-C1-C5-Fe1	-110.1 (4)	C23—C24—C25—C20	1.0 (8)
C10—C6—C7—C8	-1.1 (5)	C21—C20—C25—C24	-0.2 (7)
Fe1—C6—C7—C8	-60.0 (3)	Sb1—C20—C25—C24	-179.1 (4)
C10-C6-C7-Fe1	58.9 (3)	C31—C26—C27—C28	-1.6 (6)
C6—C7—C8—C9	0.1 (5)	Sb1—C26—C27—C28	178.0 (3)
Fe1—C7—C8—C9	-60.4 (3)	C26—C27—C28—C29	0.8 (7)
C6—C7—C8—Fe1	60.5 (3)	C27—C28—C29—C30	0.0 (8)
C7—C8—C9—C10	0.9 (5)	C28—C29—C30—C31	0.1 (8)
Fe1-C8-C9-C10	-59.2 (3)	C27—C26—C31—C30	1.7 (6)
C7-C8-C9-Fe1	60.1 (3)	Sb1—C26—C31—C30	-177.8 (3)
С7—С6—С10—С9	1.7 (5)	C29—C30—C31—C26	-1.0 (7)
Fe1—C6—C10—C9	60.7 (3)		