metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

cis-Bis(O-methyldithiocarbonato- $\kappa^2 S, S'$)bis(triphenylphosphane- κP)ruthenium(II)

Cintya Valerio-Cárdenas, Simón Hernández-Ortega, Reyna Reyes-Martínez and David Morales-Morales*

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México, D.F., 04510, Mexico Correspondence e-mail: damor@unam.mx

Received 8 June 2013; accepted 16 June 2013

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.039; wR factor = 0.097; data-to-parameter ratio = 15.6.

In the title compound, $[Ru(CH_3OCS_2)_2(C_{18}H_{15}P)_2]$, the Ru^{II} atom is in a distorted octahedral coordination by two xanthate anions (CH₃OCS₂) and two triphenylphosphane (PPh₃) ligands. Both bidentate xanthate ligands coordinate the Ru^{II} atom with two slightly different Ru–S bond lengths but with virtually equal bite angles [71.57 (4) and 71.58 (3)°]. The packing of the complexes is assured by C–H···O and C–H···O and C–H··· π interactions.

Related literature

For complexes with metal-S and metal-P bonds, see: Lu *et al.* (2003); Wang *et al.* (2010). For ruthenium complexes with dithiolate ligands, see: Bag *et al.* (1990); Liu *et al.* (2005); Noda *et al.* (2006); Wu *et al.* (2009).

CrossN

Experimental

Crystal data

$Ru(C_2H_3OS_2)_2(C_{18}H_{15}P)_2$]	V = 7576.9 (3) Å ³
$M_r = 839.94$	Z = 8
Orthorhombic, Pbca	Mo $K\alpha$ radiation
a = 10.7285 (3) Å	$\mu = 0.75 \text{ mm}^{-1}$
p = 18.5470 (4) Å	$T = 298 { m K}$
r = 38.0785 (9) Å	$0.32 \times 0.21 \times 0.18 \text{ mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2007) $T_{min} = 0.665, T_{max} = 0.745$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	444 parameters
$vR(F^2) = 0.097$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$
5924 reflections	$\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$

31337 measured reflections

 $R_{\rm int} = 0.048$

6924 independent reflections

4970 reflections with $I > 2\sigma(I)$

Table 1

Selected bond lengths (Å).

Ru1-P1	2.3180 (9)	Ru1-S2	2.4530 (10)
Ru1-P2	2.3493 (9)	Ru1-S3	2.3981 (9)
Ru1-S1	2.4015 (10)	Ru1-S4	2.4426 (9)

Table 2

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C25-C30 ring.

C11-H11···O5 ⁱ 0.93 2.51 3.387 (5) 157 C40-H40···Cg ⁱⁱ 0.93 2.85 3.521 (4) 130	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
	$ \begin{array}{c} \hline C11 - H11 \cdots O5^{i} \\ C40 - H40 \cdots Cg^{ii} \end{array} $	0.93 0.93	2.51 2.85	3.387 (5) 3.521 (4)	157 130

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, -z$; (ii) $x + \frac{1}{2}, y, -z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

CVC would like to thank CONACYT for a postdoctoral scholarship (290679-UNAM). Support of this research by CONACYT (CB2010–154732) and PAPIIT (IN201711–3) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VN2074).

References

Bag, N., Lahiri, G. K. & Chakravorty, A. (1990). J. Chem. Soc. Dalton Trans. pp. 1557–1561.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Liu, X., Zhang, Q.-F. & Leung, W.-H. (2005). J. Coord. Chem. 58, 1299–1305. Lu, X. L., Ng, S. Y., Vittal, J. J., Tan, G. K., Goh, Y. L. & Hor, T. S. A. (2003). J. Organomet. Chem. 688, 100–111.
- Noda, K., Ohuchi, Y., Hashimoto, A., Fujiki, M., Itoh, S., Iwatsuki, S., Noda, T., Suzuki, T., Kashiwabara, K. & Tagagi, H. D. (2006). *Inorg. Chem.* 45, 1349– 1355.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155.
- Wang, X.-Y., Li, Y., Ma, Q. & Zhang, Q.-F. (2010). Organometallics, 29, 2752– 2760.
- Wu, F.-H., Duan, T., Lu, L., Zhang, Q.-F. & Leung, W.-H. (2009). J. Organomet. Chem. 694, 3844–3851.

supporting information

Acta Cryst. (2013). E69, m408–m409 [https://doi.org/10.1107/S1600536813016735]

cis-Bis(*O*-methyldithiocarbonato- $\kappa^2 S, S'$)bis(triphenylphosphane- κP)ruthenium(II)

Cintya Valerio-Cárdenas, Simón Hernández-Ortega, Reyna Reyes-Martínez and David Morales-Morales

S1. Comment

Complexes containing metal-S and metal-P bonds are of great interest due to their potential role in homogeneous catalysis (Lu *et al.*, 2003; Wang *et al.*, 2010). In this context, complexes with Ru—S bonds may serve in hydrotreating processes of different fractions of oil and as functional models for Fe—S proteins. Some common sulfur-ligands used to coordinate Ru^{II} are dithiolates as dithiocarbamates ($R_2NCS_2^-$), xanthates ($ROCS_2^-$) and dithiophosphates ((RO)₂PS₂⁻). Examples of Ru(II) complexes with dithiolates reported previously include *trans*-[Ru(PPh₃)₂(S₂COPr)₂], *cis*-[Ru(PPh₃)₂(S₂CO^Pr)₂] (Wu *et al.*, 2009; Bag *et al.*, 1990), *cis*-[Ru(PPh₃)₂(S₂COEt)₂] (Noda *et al.*, 2006) and *cis*-[Ru(PPh₃)₂(S₂P(OEt)₂)₂] (Liu *et al.*, 2005).

We report here the crystal structure of *cis*-bis(*O*-Methyldithiocarbonato)-bis(triphenylphosphane)ruthenium (II) *cis*-[Ru(PPh₃)₂(S₂COMe)₂] of which the molecular structure is shown in Fig. 1.

The title complex is mononuclear and the ruthenium center is found in a distorted octahedral geometry. The coordination sphere is composed of two triphenylphosphane ligands (PPh₃) and two xanthate ligands (S₂COMe) arranged in a *cis* conformation. The two xanthate ligands coordinate the Ru^{II} atom in a bidentated manner with Ru—S distances of 2.4015 (10) and 2.4528 (11) Å for one ligand, and 2.3982 (10) and 2.4425 (11) Å for the other. Such slightly different Ru-S distances for the bidentate xanthate ligand are also found in the analogue compounds *cis*-[Ru(PPh₃)₂(S₂CO/Pr)₂] (Wu *et al.*, 2009) and *cis*-[Ru(PPh₃)₂(S₂COEt)₂] (Noda *et al.*, 2006). The two bite angles of the chelating xanthate ligands are nearly the same: 71.57 (4)° for S1—Ru1—S2 and 71.58 (4)° for S3—Ru1—S4. The two PPh₃ ligands are arranged in a *cis* conformation with a P1—Ru1—P2 angle of 100.95 (3)°. The Ru—P distances are 2.3180 (8) Å for Ru1—P1 and 2.3494 (8) Å for Ru1—P2, respectively. These distances are similar to those found in related compounds. There are weak non-covalent interactions [C11—H11···O5 and C40—H40···*π*], which produce a layer arrangement parallel to the *ac* plane (Fig. 2).

S2. Experimental

A mixture of carbon disulfide CS₂ (0.06 ml) and sodium hydroxide KOH (0.003 g, 0.052 mmol) in methanol (30 ml) was stirred a room temperature overnight. Then [RuHCl(CO)(PPh₃)₃] (0.050 g, 0.052 mmol) was added and the yellow solution was set to reflux for 3 h. Brown crystals suitable for single-crystal X-ray diffraction analysis were obtained by slow evaporation of the solvent from a saturated solution of the title compound.¹H RMN (300 MHz, CDCl₃) δ : 1.18 (s, 6H, -CH₃), 7.0–7.6 (m, PPh₃). ³¹P {¹H} NMR (121 MHz, CDCl₃) δ : 43.33 (s).

S3. Refinement

H atoms were included in calculated position (C—H = 0.93 Å for aromatic H, and C—H = 0.96 Å for methyl H), and refined using a riding model with $U_{iso}(H) = 1.2 U_{eq}$ of the carrier atoms. 5 badly fitting reflections were omitted from the final refinement.

Figure 1

Molecular structure of the title compound, showing 30% probability displacement ellipsoids. The hydrogen atoms have been omitted for clarity

Figure 2

Layer arrangement generated by C—H···O and C—H··· π interactions. Hydrogen bond interactions are shown by dashed lines.

cis-Bis(O-methyldithiocarbonato- $\kappa^2 S, S'$)bis(triphenylphosphane- κP)ruthenium(II)

Crystal data

[Ru(C ₂ H ₃ OS ₂) ₂ (C ₁₈ H ₁₅ P) ₂]
$M_r = 839.94$
Orthorhombic, Pbca
a = 10.7285 (3) Å
b = 18.5470 (4) Å
c = 38.0785 (9) Å
V = 7576.9 (3) Å ³
Z = 8
F(000) = 3440

Data collection

Bruker SMART APEX CCD area-detector diffractometer Detector resolution: 0.83 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2007) $T_{min} = 0.665, T_{max} = 0.745$ 31337 measured reflections

Refinement

Refinement on F^2 Hydrogen site locat
neighbouring siteLeast-squares matrix: fullneighbouring site
neighbouring site $R[F^2 > 2\sigma(F^2)] = 0.039$ H-atom parameters
 $wR(F^2) = 0.097$ $wR(F^2) = 0.097$ $w = 1/[\sigma^2(F_o^2) + (0.1)]$
where $P = (F_o^2 + 6924 \text{ reflections})$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.001$ 444 parameters $\Delta\rho_{max} = 0.45 \text{ e } \text{Å}^{-3}$
0 restraints

 $D_x = 1.473 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4576 reflections $\theta = 2.3-22.7^{\circ}$ $\mu = 0.75 \text{ mm}^{-1}$ T = 298 KPrism, brown $0.32 \times 0.21 \times 0.18 \text{ mm}$

6924 independent reflections 4970 reflections with $I > 2\sigma(I)$ $R_{int} = 0.048$ $\theta_{max} = 25.4^\circ, \ \theta_{min} = 2.1^\circ$ $h = -12 \rightarrow 12$ $k = -22 \rightarrow 11$ $l = -45 \rightarrow 44$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0395P)^2 + 3.2859P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.45$ e Å⁻³ $\Delta\rho_{min} = -0.52$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ru1	0.49018 (2)	0.22296 (2)	0.12872 (2)	0.03379 (10)	
S1	0.53986 (10)	0.34881 (5)	0.13361 (3)	0.0530 (3)	
S2	0.65542 (9)	0.23693 (6)	0.17272 (3)	0.0584 (3)	
S3	0.51741 (8)	0.09579 (5)	0.12028 (2)	0.0433 (2)	
S4	0.66125 (9)	0.20447 (5)	0.08736 (3)	0.0510 (3)	
P1	0.36233 (8)	0.23769 (5)	0.08017 (2)	0.0360 (2)	
P2	0.34169 (8)	0.20338 (5)	0.17305 (2)	0.0349 (2)	
C1	0.6547 (3)	0.3238 (2)	0.16107 (10)	0.0559 (11)	
O2	0.7348 (3)	0.3757 (2)	0.17080 (9)	0.0946 (11)	
C3	0.8371 (5)	0.3540 (3)	0.19023 (15)	0.123 (2)	
H3A	0.8095	0.3302	0.2112	0.185*	
H3B	0.8861	0.3954	0.1964	0.185*	
H3C	0.8868	0.3214	0.1765	0.185*	
C4	0.6404 (3)	0.1166 (2)	0.09494 (9)	0.0465 (9)	
O5	0.7202 (3)	0.06898 (15)	0.08116 (8)	0.0700 (8)	
C6	0.6966 (5)	-0.0058(2)	0.08750 (13)	0.0940 (17)	
H6A	0.6917	-0.0142	0.1123	0.141*	
H6B	0.7630	-0.0341	0.0777	0.141*	
H6C	0.6191	-0.0193	0.0767	0.141*	
C7	0.4101 (3)	0.30357 (18)	0.04616 (9)	0.0411 (8)	
C8	0.5228 (4)	0.3396 (2)	0.04596 (10)	0.0560 (11)	
H8	0.5794	0.3318	0.0641	0.067*	
C9	0.5527 (4)	0.3872 (2)	0.01924 (11)	0.0688 (12)	
H9	0.6290	0.4110	0.0196	0.083*	
C10	0.4715 (5)	0.3995 (2)	-0.00764 (12)	0.0671 (12)	
H10	0.4920	0.4317	-0.0255	0.081*	
C11	0.3592 (4)	0.3641 (2)	-0.00824 (10)	0.0633 (12)	
H11	0.3038	0.3720	-0.0266	0.076*	
C12	0.3284 (4)	0.3168 (2)	0.01837 (9)	0.0531 (10)	
H12	0.2518	0.2933	0.0178	0.064*	
C13	0.3449 (3)	0.15609 (18)	0.05361 (9)	0.0404 (8)	
C14	0.2740 (3)	0.09938 (19)	0.06594 (10)	0.0506 (10)	
H14	0.2295	0.1049	0.0867	0.061*	
C15	0.2675 (4)	0.0341 (2)	0.04797 (12)	0.0623 (11)	
H15	0.2183	-0.0033	0.0565	0.075*	
C16	0.3334 (4)	0.0255 (2)	0.01798 (14)	0.0738 (14)	
H16	0.3297	-0.0181	0.0060	0.089*	
C17	0.4059 (4)	0.0807 (3)	0.00510 (12)	0.0733 (13)	
H17	0.4507	0.0743	-0.0156	0.088*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

C18	0.4124 (4)	0.1461 (2)	0.02284 (10)	0.0555 (10)
H18	0.4618	0.1831	0.0141	0.067*
C19	0.2034 (3)	0.27155 (17)	0.08636 (9)	0.0382 (8)
C20	0.1884 (3)	0.33041 (18)	0.10886 (10)	0.0473 (9)
H20	0.2575	0.3498	0.1202	0.057*
C21	0.0722 (4)	0.3602 (2)	0.11449 (11)	0.0633 (11)
H21	0.0630	0.3994	0.1295	0.076*
C22	-0.0300 (4)	0.3315 (2)	0.09773 (13)	0.0683 (13)
H22	-0.1087	0.3507	0.1020	0.082*
C23	-0.0170 (4)	0.2751 (2)	0.07487 (12)	0.0617 (12)
H23	-0.0863	0.2569	0.0632	0.074*
C24	0.0991 (3)	0.2452 (2)	0.06914 (9)	0.0477 (9)
H24	0.1074	0.2069	0.0535	0.057*
C25	0.2161 (3)	0.14138 (17)	0.15982 (8)	0.0363 (8)
C26	0.2377 (3)	0.06684 (18)	0.15944 (9)	0.0432 (9)
H26	0.3124	0.0487	0.1681	0.052*
C27	0.1490 (4)	0.0200 (2)	0.14633 (9)	0.0525 (10)
H27	0.1652	-0.0292	0.1459	0.063*
C28	0.0367 (4)	0.0455 (2)	0.13385 (10)	0.0571 (11)
H28	-0.0227	0.0137	0.1252	0.069*
C29	0.0132 (3)	0.1184 (2)	0.13428 (10)	0.0534 (10)
H29	-0.0627	0.1358	0.1261	0.064*
C30	0.1019 (3)	0.16590 (19)	0.14680 (9)	0.0433 (9)
H30	0.0852	0.2151	0.1466	0.052*
C31	0.2568 (3)	0.27645 (17)	0.19566 (9)	0.0409 (8)
C32	0.3135 (4)	0.34300 (18)	0.19887 (9)	0.0524 (10)
H32	0.3907	0.3511	0.1885	0.063*
C33	0.2549 (5)	0.3980 (2)	0.21766 (11)	0.0728 (14)
H33	0.2923	0.4432	0.2190	0.087*
C34	0.1448 (5)	0.3869 (3)	0.23398 (12)	0.0763 (14)
H34	0.1070	0.4239	0.2465	0.092*
C35	0.0896 (4)	0.3207 (3)	0.23186 (12)	0.0719 (13)
H35	0.0149	0.3124	0.2435	0.086*
C36	0.1439 (4)	0.2660 (2)	0.21249 (10)	0.0573 (11)
H36	0.1039	0.2217	0.2107	0.069*
C37	0.4031 (3)	0.15415 (17)	0.21204 (9)	0.0390 (8)
C38	0.3472 (4)	0.1590 (2)	0.24458 (10)	0.0571 (11)
H38	0.2792	0.1895	0.2475	0.068*
C39	0.3904 (4)	0.1191 (2)	0.27324 (10)	0.0664 (12)
H39	0.3512	0.1236	0.2949	0.080*
C40	0.4892 (4)	0.0738 (2)	0.26969 (11)	0.0567 (11)
H40	0.5172	0.0468	0.2887	0.068*
C41	0.5467 (4)	0.0685 (2)	0.23786 (11)	0.0586 (11)
H41	0.6153	0.0383	0.2353	0.070*
C42	0.5037 (3)	0.1079 (2)	0.20913 (10)	0.0538 (10)
H42	0.5435	0.1031	0.1876	0.065*

supporting information

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ru1	0.03219 (16)	0.03129 (16)	0.03787 (17)	-0.00165 (12)	0.00045 (12)	0.00142 (12)
S1	0.0552 (6)	0.0367 (5)	0.0671 (7)	-0.0079 (4)	0.0044 (5)	-0.0017 (5)
S2	0.0481 (6)	0.0714 (7)	0.0557 (6)	-0.0006 (5)	-0.0137 (5)	-0.0007 (5)
S3	0.0465 (5)	0.0367 (5)	0.0467 (5)	0.0009 (4)	0.0086 (4)	0.0022 (4)
S4	0.0430 (5)	0.0498 (6)	0.0601 (6)	-0.0041 (4)	0.0154 (5)	0.0044 (5)
P1	0.0370 (5)	0.0336 (5)	0.0375 (5)	-0.0023 (4)	-0.0007 (4)	0.0014 (4)
P2	0.0361 (5)	0.0301 (5)	0.0384 (5)	-0.0001 (4)	0.0011 (4)	0.0007 (4)
C1	0.046 (2)	0.062 (3)	0.060 (3)	-0.021 (2)	0.006 (2)	-0.016 (2)
02	0.064 (2)	0.118 (3)	0.102 (3)	-0.024 (2)	-0.013 (2)	-0.027 (2)
С3	0.094 (4)	0.177 (7)	0.099 (5)	-0.028 (4)	-0.015 (4)	-0.028 (4)
C4	0.042 (2)	0.051 (2)	0.046 (2)	0.0094 (18)	0.0093 (17)	0.0016 (18)
05	0.076 (2)	0.0558 (18)	0.079 (2)	0.0093 (15)	0.0323 (16)	0.0025 (15)
C6	0.128 (5)	0.052 (3)	0.103 (4)	0.019 (3)	0.038 (3)	-0.007 (3)
C7	0.047 (2)	0.0374 (19)	0.039 (2)	0.0040 (17)	0.0030 (17)	0.0055 (16)
C8	0.059 (3)	0.057 (3)	0.051 (2)	-0.012 (2)	-0.003 (2)	0.013 (2)
C9	0.073 (3)	0.068 (3)	0.066 (3)	-0.021 (2)	0.006 (3)	0.019 (2)
C10	0.095 (4)	0.051 (3)	0.055 (3)	0.001 (2)	0.017 (3)	0.018 (2)
C11	0.080 (3)	0.063 (3)	0.047 (2)	0.012 (2)	0.001 (2)	0.015 (2)
C12	0.057 (2)	0.055 (2)	0.048 (2)	0.001 (2)	0.000 (2)	0.0090 (19)
C13	0.040 (2)	0.039 (2)	0.043 (2)	0.0040 (16)	-0.0096 (17)	-0.0039 (16)
C14	0.059 (2)	0.043 (2)	0.050 (2)	-0.0051 (19)	-0.004 (2)	0.0008 (18)
C15	0.062 (3)	0.042 (2)	0.082 (3)	-0.001 (2)	-0.016 (2)	-0.008(2)
C16	0.071 (3)	0.049 (3)	0.102 (4)	0.009 (2)	-0.015 (3)	-0.028 (3)
C17	0.068 (3)	0.077 (3)	0.074 (3)	0.015 (3)	0.005 (3)	-0.033 (3)
C18	0.050 (2)	0.056 (3)	0.061 (3)	0.0053 (19)	0.005 (2)	-0.011 (2)
C19	0.040 (2)	0.0341 (19)	0.041 (2)	-0.0022 (16)	-0.0011 (16)	0.0051 (16)
C20	0.049 (2)	0.038 (2)	0.054 (2)	-0.0010 (17)	-0.0020 (19)	-0.0007 (18)
C21	0.063 (3)	0.050 (2)	0.077 (3)	0.011 (2)	0.004 (2)	-0.008 (2)
C22	0.049 (3)	0.064 (3)	0.092 (4)	0.015 (2)	0.001 (2)	0.010 (3)
C23	0.040 (2)	0.066 (3)	0.078 (3)	-0.005 (2)	-0.005 (2)	0.004 (2)
C24	0.042 (2)	0.051 (2)	0.051 (2)	-0.0043 (18)	-0.0016 (18)	-0.0041 (19)
C25	0.043 (2)	0.0320 (19)	0.0342 (19)	-0.0030 (15)	0.0059 (16)	0.0031 (15)
C26	0.049 (2)	0.034 (2)	0.046 (2)	-0.0004 (17)	0.0036 (18)	0.0013 (16)
C27	0.072 (3)	0.037 (2)	0.049 (2)	-0.012 (2)	0.008 (2)	-0.0025 (18)
C28	0.065 (3)	0.045 (2)	0.062 (3)	-0.024 (2)	-0.006 (2)	0.000(2)
C29	0.045 (2)	0.060 (3)	0.056 (3)	-0.0115 (19)	-0.0045 (19)	0.005 (2)
C30	0.045 (2)	0.041 (2)	0.044 (2)	-0.0026 (17)	0.0035 (18)	0.0046 (17)
C31	0.047 (2)	0.0355 (19)	0.040 (2)	0.0033 (16)	0.0017 (17)	-0.0010 (16)
C32	0.074 (3)	0.039 (2)	0.045 (2)	-0.0085 (19)	0.008 (2)	-0.0022 (17)
C33	0.125 (4)	0.036 (2)	0.057 (3)	-0.002 (3)	0.003 (3)	-0.010 (2)
C34	0.099 (4)	0.061 (3)	0.069 (3)	0.028 (3)	0.013 (3)	-0.013 (2)
C35	0.057 (3)	0.077 (3)	0.081 (3)	0.016 (2)	0.016 (2)	-0.018 (3)
C36	0.056 (2)	0.051 (2)	0.065 (3)	0.003 (2)	0.008 (2)	-0.010 (2)
C37	0.045 (2)	0.0334 (19)	0.039 (2)	-0.0050 (16)	0.0016 (17)	-0.0014 (16)
C38	0.052(2)	0.064(3)	0.055(3)	0.013(2)	0.003(2)	0.009(2)

supporting information

C39	0.070 (3)	0.086 (3)	0.043 (2)	0.011 (3)	0.002 (2)	0.010 (2)
C40	0.069 (3)	0.057 (3)	0.044 (2)	-0.002(2)	-0.013 (2)	0.0102 (19)
C41	0.064 (3)	0.056 (3)	0.056 (3)	0.014 (2)	-0.009 (2)	0.006 (2)
C42	0.064 (3)	0.053 (2)	0.044 (2)	0.016 (2)	0.002 (2)	0.0012 (19)

Geometric parameters (Å, °)

Ru1—P1	2.3180 (9)	C17—H17	0.9300
Ru1—P2	2.3493 (9)	C18—H18	0.9300
Ru1—S1	2.4015 (10)	C19—C24	1.386 (4)
Ru1—S2	2.4530 (10)	C19—C20	1.397 (5)
Ru1—S3	2.3981 (9)	C20—C21	1.381 (5)
Ru1—S4	2.4426 (9)	C20—H20	0.9300
S1—C1	1.681 (4)	C21—C22	1.375 (6)
S2—C1	1.672 (4)	C21—H21	0.9300
S3—C4	1.680 (4)	C22—C23	1.368 (6)
S4—C4	1.670 (4)	C22—H22	0.9300
P1—C13	1.830 (3)	C23—C24	1.381 (5)
P1-C19	1.833 (3)	С23—Н23	0.9300
Р1—С7	1.853 (3)	C24—H24	0.9300
P2—C25	1.841 (3)	C25—C30	1.398 (4)
P2—C31	1.846 (3)	C25—C26	1.402 (4)
P2—C37	1.863 (3)	C26—C27	1.382 (5)
C1—O2	1.342 (4)	C26—H26	0.9300
O2—C3	1.384 (6)	C27—C28	1.379 (5)
С3—НЗА	0.9600	С27—Н27	0.9300
С3—Н3В	0.9600	C28—C29	1.374 (5)
С3—НЗС	0.9600	C28—H28	0.9300
C4—O5	1.337 (4)	C29—C30	1.381 (5)
O5—C6	1.430 (5)	С29—Н29	0.9300
С6—Н6А	0.9600	С30—Н30	0.9300
C6—H6B	0.9600	C31—C32	1.382 (5)
С6—Н6С	0.9600	C31—C36	1.384 (5)
C7—C8	1.382 (5)	C32—C33	1.396 (5)
C7—C12	1.396 (5)	С32—Н32	0.9300
C8—C9	1.385 (5)	C33—C34	1.350 (6)
C8—H8	0.9300	С33—Н33	0.9300
C9—C10	1.364 (6)	C34—C35	1.365 (6)
С9—Н9	0.9300	C34—H34	0.9300
C10-C11	1.372 (6)	C35—C36	1.383 (5)
C10—H10	0.9300	С35—Н35	0.9300
C11—C12	1.381 (5)	C36—H36	0.9300
C11—H11	0.9300	C37—C38	1.379 (5)
C12—H12	0.9300	C37—C42	1.382 (5)
C13—C14	1.381 (5)	C38—C39	1.397 (5)
C13—C18	1.390 (5)	C38—H38	0.9300
C14—C15	1.393 (5)	C39—C40	1.360 (5)
C14—H14	0.9300	С39—Н39	0.9300

C15-C16	1 353 (6)	C40—C41	1 363 (5)
C15—H15	0.9300	C40 - H40	0.9300
C16-C17	1 376 (6)	C41 - C42	1.394(5)
C16—H16	0.9300	$C_{41} = C_{42}$	0.9300
$C_{10} = C_{10}$	1 380 (5)	$C_{41} = H_{41}$	0.9300
01/018	1.369 (3)	042-1142	0.9300
P1—Ru1—P2	100.95 (3)	С17—С16—Н16	119.7
P1—Ru1—S3	94.66 (3)	C16—C17—C18	120.3 (4)
P2—Ru1—S3	91.54 (3)	C16—C17—H17	119.9
P1—Ru1—S1	94.51 (3)	C18—C17—H17	119.9
P2—Ru1—S1	104.18 (3)	C17—C18—C13	120.0 (4)
S3—Ru1—S1	159.93 (4)	C17—C18—H18	120.0
P1—Ru1—S4	86.97 (3)	C13—C18—H18	120.0
P2—Ru1—S4	162.01 (3)	C24—C19—C20	118.2 (3)
S3—Ru1—S4	71.58 (3)	C24—C19—P1	124.7(3)
S1—Ru1—S4	91.13 (3)	C_{20} C_{19} P_{1}	117.0(3)
P1— $Ru1$ — $S2$	163 72 (4)	C_{21} C_{20} C_{19} C_{19}	120.8(4)
$P_{2}=R_{11}=S_{2}$	90.89 (4)	$C_{21} = C_{20} = H_{20}$	119.6
$S_{3}=R_{11}=S_{2}$	96 16 (4)	C19 - C20 - H20	119.6
$S_{1} = R_{11} = S_{2}$	71.57(4)	$C_{12}^{22} = C_{21}^{21} = C_{20}^{20}$	119.0 110.5(A)
$S_1 = Ru_1 = S_2$ $S_4 = Ru_1 = S_2$	84.96 (4)	$C_{22} = C_{21} = C_{20}$	117.5 (4)
C1 S1 Pu1	86.74 (13)	$C_{22} = C_{21} = H_{21}$	120.2
C1 = S2 = Ru1	85 26 (13)	$C_{20} = C_{21} = H_{21}$	120.2 120.7 (4)
$C_1 = S_2 = Ru_1$	86.04 (13)	$C_{23} = C_{22} = C_{21}$	120.7 (4)
C4 = S3 = Ku1	85.60 (12)	$C_{23} = C_{22} = H_{22}$	119.7
C4 - 54 - Kul	63.09(12)	$C_{21} = C_{22} = C_{24}$	119.7
C13—P1—C19	105.04 (15)	$C_{22} = C_{23} = C_{24}$	120.0 (4)
C13 - P1 - C7	100.79 (16)	C22—C23—H23	120.0
C19 - P1 - C7	96.96 (15)	C24—C23—H23	120.0
C13— $P1$ — Rul	113.81 (11)	$C_{23} = C_{24} = C_{19}$	120.8 (4)
CI9—PI—Rul	119.25 (11)	C23—C24—H24	119.6
C/—PI—Rul	118.13 (12)	С19—С24—Н24	119.6
C25—P2—C31	103.00 (15)	C30—C25—C26	117.5 (3)
C25—P2—C37	99.82 (14)	C30—C25—P2	122.4 (3)
C31—P2—C37	99.36 (15)	C26—C25—P2	119.9 (3)
C25—P2—Ru1	113.33 (11)	C27—C26—C25	120.7 (3)
C31—P2—Ru1	123.81 (11)	С27—С26—Н26	119.7
C37—P2—Ru1	114.11 (11)	C25—C26—H26	119.7
O2—C1—S2	128.0 (3)	C28—C27—C26	120.7 (4)
O2—C1—S1	116.3 (3)	С28—С27—Н27	119.7
S2—C1—S1	115.7 (2)	С26—С27—Н27	119.7
C1—O2—C3	116.6 (4)	C29—C28—C27	119.6 (4)
O2—C3—H3A	109.5	C29—C28—H28	120.2
O2—C3—H3B	109.5	C27—C28—H28	120.2
НЗА—СЗ—НЗВ	109.5	C28—C29—C30	120.3 (4)
O2—C3—H3C	109.5	С28—С29—Н29	119.8
НЗА—СЗ—НЗС	109.5	С30—С29—Н29	119.8
НЗВ—СЗ—НЗС	109.5	C29—C30—C25	121.2 (3)
O5—C4—S4	119.4 (3)	С29—С30—Н30	119.4

O5—C4—S3	125.2 (3)	С25—С30—Н30	119.4
S4—C4—S3	115.4 (2)	C32—C31—C36	118.0 (3)
C4—O5—C6	117.4 (3)	C32—C31—P2	118.7 (3)
O5—C6—H6A	109.5	C36—C31—P2	123.1 (3)
O5—C6—H6B	109.5	C31—C32—C33	120.0 (4)
H6A—C6—H6B	109.5	С31—С32—Н32	120.0
O5—C6—H6C	109.5	С33—С32—Н32	120.0
H6A—C6—H6C	109.5	C34—C33—C32	121.2 (4)
H6B—C6—H6C	109.5	С34—С33—Н33	119.4
C8—C7—C12	117.4 (3)	С32—С33—Н33	119.4
C8—C7—P1	124.4 (3)	C_{33} — C_{34} — C_{35}	119.3 (4)
C12—C7—P1	118.2 (3)	С33—С34—Н34	120.3
C7—C8—C9	121.1 (4)	C35—C34—H34	120.3
C7—C8—H8	119.5	C34-C35-C36	120.6 (4)
C9—C8—H8	119.5	C34—C35—H35	119.7
C10—C9—C8	120.6 (4)	C36—C35—H35	119.7
C10—C9—H9	119.7	C_{35} — C_{36} — C_{31}	120.9 (4)
С8—С9—Н9	119.7	C35—C36—H36	119.6
C9-C10-C11	119.6 (4)	C31—C36—H36	119.6
C9-C10-H10	120.2	$C_{38} - C_{37} - C_{42}$	116.8 (3)
C11—C10—H10	120.2	C_{38} C_{37} P_{2}	122.0(3)
C10-C11-C12	120.2 (4)	C42—C37—P2	121.1(3)
C10—C11—H11	119.9	C37—C38—C39	121.5 (4)
C12—C11—H11	119.9	С37—С38—Н38	119.2
C11—C12—C7	121.2 (4)	С39—С38—Н38	119.2
C11—C12—H12	119.4	C40—C39—C38	120.5 (4)
C7—C12—H12	119.4	С40—С39—Н39	119.7
C14—C13—C18	118.2 (3)	С38—С39—Н39	119.7
C14—C13—P1	119.9 (3)	C39—C40—C41	119.0 (4)
C18—C13—P1	121.6 (3)	С39—С40—Н40	120.5
C13—C14—C15	121.5 (4)	C41—C40—H40	120.5
C13—C14—H14	119.2	C40—C41—C42	120.7 (4)
C15—C14—H14	119.2	C40—C41—H41	119.7
C16—C15—C14	119.4 (4)	C42—C41—H41	119.7
C16—C15—H15	120.3	C37—C42—C41	121.4 (4)
C14—C15—H15	120.3	С37—С42—Н42	119.3
C15—C16—C17	120.6 (4)	C41—C42—H42	119.3
C15—C16—H16	119.7		
Ru1—S2—C1—O2	-171.8 (4)	C19—C20—C21—C22	0.0 (6)
Ru1—S2—C1—S1	7.8 (2)	C20—C21—C22—C23	-1.8 (7)
Ru1—S1—C1—O2	171.7 (3)	C21—C22—C23—C24	1.7 (7)
Ru1—S1—C1—S2	-7.9 (2)	C22—C23—C24—C19	0.1 (6)
S2—C1—O2—C3	6.5 (6)	C20—C19—C24—C23	-1.8 (5)
S1—C1—O2—C3	-173.1 (4)	P1-C19-C24-C23	-178.6 (3)
Ru1—S4—C4—O5	-173.8 (3)	C31—P2—C25—C30	40.4 (3)
Ru1—S4—C4—S3	5.8 (2)	C37—P2—C25—C30	142.5 (3)
Ru1—S3—C4—O5	173.6 (3)	Ru1—P2—C25—C30	-95.7 (3)

Ru1—S3—C4—S4	-5.9 (2)	C31—P2—C25—C26	-145.7 (3)
S4—C4—O5—C6	-178.2 (3)	C37—P2—C25—C26	-43.6 (3)
S3—C4—O5—C6	2.2 (5)	Ru1—P2—C25—C26	78.1 (3)
C13—P1—C7—C8	-118.0 (3)	C30—C25—C26—C27	0.6 (5)
C19—P1—C7—C8	135.2 (3)	P2-C25-C26-C27	-173.6 (3)
Ru1—P1—C7—C8	6.6 (4)	C25—C26—C27—C28	-1.0(5)
C13—P1—C7—C12	60.5 (3)	C26—C27—C28—C29	0.4 (6)
C19—P1—C7—C12	-46.3 (3)	C27—C28—C29—C30	0.7 (6)
Ru1—P1—C7—C12	-174.9 (2)	C28—C29—C30—C25	-1.1 (6)
C12—C7—C8—C9	0.3 (6)	C26—C25—C30—C29	0.5 (5)
P1C7C8C9	178.8 (3)	P2-C25-C30-C29	174.4 (3)
C7—C8—C9—C10	-0.2 (7)	C25—P2—C31—C32	-158.7 (3)
C8—C9—C10—C11	-0.3 (7)	C37—P2—C31—C32	98.9 (3)
C9-C10-C11-C12	0.5 (6)	Ru1—P2—C31—C32	-28.6 (3)
C10—C11—C12—C7	-0.4 (6)	C25—P2—C31—C36	27.6 (3)
C8—C7—C12—C11	0.0 (6)	C37—P2—C31—C36	-74.8 (3)
P1-C7-C12-C11	-178.6 (3)	Ru1—P2—C31—C36	157.7 (3)
C19—P1—C13—C14	-59.5 (3)	C36—C31—C32—C33	-2.1 (6)
C7—P1—C13—C14	-159.8 (3)	P2-C31-C32-C33	-176.2 (3)
Ru1—P1—C13—C14	72.7 (3)	C31—C32—C33—C34	2.3 (6)
C19—P1—C13—C18	127.7 (3)	C32—C33—C34—C35	-0.4 (7)
C7—P1—C13—C18	27.4 (3)	C33—C34—C35—C36	-1.7 (7)
Ru1—P1—C13—C18	-100.1 (3)	C34—C35—C36—C31	1.8 (7)
C18—C13—C14—C15	-1.2 (5)	C32—C31—C36—C35	0.1 (6)
P1-C13-C14-C15	-174.2 (3)	P2-C31-C36-C35	173.8 (3)
C13—C14—C15—C16	0.9 (6)	C25—P2—C37—C38	-81.6 (3)
C14—C15—C16—C17	-0.3 (7)	C31—P2—C37—C38	23.5 (3)
C15—C16—C17—C18	0.1 (7)	Ru1—P2—C37—C38	157.2 (3)
C16—C17—C18—C13	-0.4 (6)	C25—P2—C37—C42	95.0 (3)
C14—C13—C18—C17	0.9 (6)	C31—P2—C37—C42	-159.9 (3)
P1-C13-C18-C17	173.9 (3)	Ru1—P2—C37—C42	-26.2 (3)
C13—P1—C19—C24	-9.2 (3)	C42—C37—C38—C39	0.1 (6)
C7—P1—C19—C24	94.0 (3)	P2-C37-C38-C39	176.8 (3)
Ru1—P1—C19—C24	-138.3 (3)	C37—C38—C39—C40	-0.3 (6)
C13—P1—C19—C20	173.9 (3)	C38—C39—C40—C41	0.8 (6)
C7—P1—C19—C20	-82.9 (3)	C39—C40—C41—C42	-1.1 (6)
Ru1—P1—C19—C20	44.9 (3)	C38—C37—C42—C41	-0.3 (5)
C24—C19—C20—C21	1.7 (5)	P2-C37-C42-C41	-177.1 (3)
P1-C19-C20-C21	178.8 (3)	C40—C41—C42—C37	0.9 (6)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C25–C30 ring.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C11—H11…O5 ⁱ	0.93	2.51	3.387 (5)	157
C40—H40····Cg ⁱⁱ	0.93	2.85	3.521 (4)	130

Symmetry codes: (i) x-1/2, -y+1/2, -z; (ii) x+1/2, y, -z+1/2.