

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Poly[[diaquatris( $\mu_2$ -4,4'-bipyridine)bis[ $\mu_2$ -2-(carboxylatomethylsulfanyl)nicotinato]dicobalt(II)] 1.3-hydrate]

#### Rui-Qin Li, Xiao-Juan Wang and Yun-Long Feng\*

Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China

Correspondence e-mail: sky37@zjnu.cn

Received 15 May 2013; accepted 2 June 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.003 Å; Hatom completeness 94%; disorder in solvent or counterion; R factor = 0.033; wR factor = 0.093; data-to-parameter ratio = 17.3.

The title complex,  $[Co_2(C_8H_5NO_4S)_2(C_{10}H_8N_2)_3(H_2O)_2]$ ·-1.3H<sub>2</sub>O, was synthesized under hydrothermal conditions. The Co<sup>II</sup> ion is six-coordinated in a slightly distorted octahedral environment resulting from two carboxylate O atoms of two 2carboxymethylsulfanyl nicotinate (2-CMSN<sup>2-</sup>) anions, one water molecule and three N atoms of three 4,4'-bipyridine ligands, with one 4,4'-bipyridine ligand situated on a centre of inversion. Two neighboring Co<sup>II</sup> ions are linked by two anions, giving a dinuclear [Co<sub>2</sub>(2-CMSN)<sub>2</sub>] subunit with a Co···Co separation of 6.8600 (3) Å. The dinuclear subunits are joined by bridging 4,4'-bipyridine linkers, generating a three-dimensional network structure. Disordered water molecules are situated in the free space of this network. O–H···O hydrogen bonding within and between the subunits enhances the stability of the structure.

#### **Related literature**

For general background to coordination polymers, see: Wang *et al.* (2004). For crystal structures of related compounds based on 2-mercaptonicotinic acid, see: Sun *et al.* (2011). For complexes derived from the 2-H<sub>2</sub>CMSN ligand, see: Jiang *et al.* (2010, 2012).



 $\beta = 125.484 \ (1)^{\circ}$ 

Z = 4

V = 2340.92 (5) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.34 \times 0.20 \times 0.11 \text{ mm}$ 

38093 measured reflections

5439 independent reflections

4772 reflections with  $I > 2\sigma(I)$ 

H-atom parameters constrained

 $\mu = 0.87 \text{ mm}^{-1}$ 

T = 296 K

 $R_{\rm int} = 0.025$ 

3 restraints

 $\Delta \rho_{\rm max} = 0.68 \text{ e} \text{ Å}^{-3}$ 

 $\Delta \rho_{\rm min} = -0.53 \text{ e} \text{ Å}^{-3}$ 

#### **Experimental**

#### Crystal data

 $\begin{array}{l} [\mathrm{Co}_2(\mathrm{C}_8\mathrm{H}_5\mathrm{NO}_4\mathrm{S})_2(\mathrm{C}_{10}\mathrm{H}_8\mathrm{N}_2)_{3^-} \\ (\mathrm{H}_2\mathrm{O})_2]\cdot 1.3\mathrm{H}_2\mathrm{O} \\ M_r = 534.13 \\ \mathrm{Monoclinic}, \ P2_1/c \\ a = 10.2211 \ (1) \ \text{\AA} \\ b = 17.1355 \ (2) \ \text{\AA} \\ c = 16.4142 \ (2) \ \text{\AA} \end{array}$ 

#### Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2006) T<sub>min</sub> = 0.814, T<sub>max</sub> = 0.912

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$  $wR(F^2) = 0.093$ S = 1.055439 reflections 315 parameters

## Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$                          | D-H          | $H \cdots A$ | $D \cdots A$           | $D - \mathbf{H} \cdots A$ |
|------------------------------------------------------|--------------|--------------|------------------------|---------------------------|
| $01W - H1WA \cdots O3^{i}$<br>$01W - H1WB \cdots O2$ | 0.85<br>0.85 | 1.89<br>1.90 | 2.663 (2)<br>2.682 (2) | 150<br>152                |
| Summatry and a (i) v                                 |              |              |                        |                           |

Symmetry code: (i) -x, -y - 1, -z.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2744).

#### References

Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Jiang, X.-R., Wang, X.-J. & Feng, Y.-L. (2010). Acta Cryst. E66, 03308.

- Jiang, X.-R., Wang, X.-J. & Feng, Y.-L. (2012). Inorg. Chim. Acta, **383**, 38–45. Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122.
- Sun, D., Wang, D.-F., Han, X.-G., Zhang, N., Huang, R.-B. & Zheng, L.-S. (2011). Chem. Commun. 47, 746–748.

Wang, X.-L., Qin, C., Wang, E.-B., Xu, L., Su, Z.-M. & Hu, C.-W. (2004). Angew. Chem. Int. Ed. 43, 5036–5040.

# supporting information

Acta Cryst. (2013). E69, m371 [https://doi.org/10.1107/S1600536813015262]

Poly[[diaquatris( $\mu_2$ -4,4'-bipyridine)bis[ $\mu_2$ -2-(carboxylatomethyl-sulfanyl)nicotinato]dicobalt(II)] 1.3-hydrate]

# Rui-Qin Li, Xiao-Juan Wang and Yun-Long Feng

## S1. Comment

The construction of coordination polymers has aroused attention due to their potential applications, fascinating topologies and entanglement motifs (Wang *et al.*, 2004).

2-Mercaptonanicotinic acid (2-H<sub>2</sub>MN) is a multifunctional ligand containing one carboxyl group, one thiol group and a pyridyl N donor atom. Some complexes based on the 2-MN<sup>2-</sup> ligand have been previously investigated, e.g. by Sun *et al.* (2011). Recently, on the basis of the 2-H<sub>2</sub>MN ligand, we have designed a new multi-carboxylate ligand, 2-carboxymethyl-sulfanyl nicotinic acid (2-H<sub>2</sub>CMSN) to construct novel complexes (Jiang *et al.*, 2010; 2012). The 2-H<sub>2</sub>CMSN ligand is interesting because of its potential versatile coordination behavior, resulting from one rigid and one flexible carboxyl group, it is favorable for constructing novel network structures. Here we report the structure of the new title compound,  $[Co(2-CMSN)(4,4'-bipy)_{1.5}(H_2O)]$ .

Complex (I) is isostructural to  $[Ni(2-CMSN)(4,4'-bipy)_{1.5}(H_2O)].0.75H_2O$  (Jiang *et al.*, 2012). The asymmetric unit of (I) contains one Co<sup>II</sup> ion, one 2-CMSN<sup>2-</sup> ligand, one and a half 4,4-bipy molecules (the other half being completed by inversion symmetry), one coordination water molecule and disordered lattice water molecules with an overall occupancy of 0.65. The coordination environment of the Co<sup>II</sup> ion is illustrated in Fig. 1. The Co<sup>II</sup> ion is six-coordinated in a slightly distorted octahedral CoN<sub>3</sub>O<sub>3</sub> environment: two O atoms originate from one flexible carboxyl group and one rigid carboxyl group of two symmetry-related 2-CMSN<sup>2-</sup> ligands, three N atoms from three 4,4'-bipy molecules and one O atom from the water molecule. Two adjacent Co<sup>II</sup> ions are linked by two 2-CMSN<sup>2-</sup> ligands to give a dinuclear [Co<sub>2</sub>(2-CMSN)<sub>2</sub>] subunit with a Co···Co distance of 6.8600 (3) Å (Fig. 2). The dinuclear [Co<sub>2</sub>(2-CMSN)<sub>2</sub>] subunits are further bridged by 4,4'-bipy linkers to generate a final three-dimensional structure (Fig. 2). The disordered water molecules are situated in the free space of the resulting network. The 4,4'-bipy molecule that is situated on a centre of inversion is exactly planar, whereas the other has a dihedral angle between the two pyridyl rings [N2,C9—C13] and [N3, C14—C18] of 33.16 (7)°.

In the crystal, intra- and inter-subunit O—H···O hydrogen bonds (Table 1) between the coordinating water molecule and carboxylate O atoms enhance the stability of the structure. Although the H atom position of the lattice water molecules could not be located, the O2W···O2 and O3W···S1 contacts of 2.864 (5) Å and 3.724 (9) Å, respectively, suggest also participation of these molecules in hydrogen bonding.

#### S2. Experimental

A mixture of 2-H<sub>2</sub>CMSN (0.4 mmol, 0.086 g),  $CoCl_2$  (0.4 mmol, 0.095 g) and 4,4'-bipy (0.4 mmol, 0.062 g) in  $CH_3CH_2OH$  (2 ml)/H<sub>2</sub>O (18 ml) was stirred for 1 h. The pH value was adjusted to around 6.0 by sodium carbonate solution in the entire process. Then the mixture was placed in a 25 ml stainless steel reactor and heated at 383 K for 24 h, and then cooled to room temperature for 24 h gave red crystals (yield 46%).

### **S3. Refinement**

The carbon-bound H-atoms were placed in idealized positions [(C—H = 0.93 or 0.97 Å,  $U_{iso}(H) = 1.2Ueq(C)$ ]. The coordinating water H-atoms were located in a different Fourier map and were refined with an O—H distance restrained to 0.85 (2) Å [ $U_{iso}(H) = 1.2Ueq(O)$ ]. The two lattice water molecules are occupationally disordered (occupancies of 0.4 for OW2 and 0.25 for OW3). No reasonable H positions could be determined from Fourier maps for these atoms. Therefore the H atoms of OW2 and OW3 were omitted from refinement, but included in the final chemical formula.



#### Figure 1

The coordination environment of the Co<sup>2+</sup> ion in the title compound and the bridging character of the ligand. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i)-x, -y - 1, -z; (ii) x + 1, -y - 1/2, z + 1/2; (iv) -x, -y - 1, -z + 1; (vi) -x-1, y-1/2, -z-1/2.]



#### Figure 2

The dinuclear  $[Co_2(2-CMSN)_2]$  subunit (left), and the three-dimensional network of the title compound (right) viewed approximately down [001].

Poly[[diaquatris( $\mu_2$ -4,4'-bipyridine)bis[ $\mu_2$ -2-(carboxylatomethylsulfanyl)nicotinato]dicobalt(II)] 1.3-hydrate]

F(000) = 1092.9V=2340.92(5)Å<sup>3</sup>  $D_x = 1.516$  Mg m<sup>-3</sup>

 $\theta = 1.9-27.6^{\circ}$   $\mu = 0.87 \text{ mm}^{-1}$  T = 296 KBlock, red

 $0.34 \times 0.20 \times 0.11 \text{ mm}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

#### Crystal data

| $[Co_2(C_8H_5NO_4S)_2(C_{10}H_8N_2)_3(H_2O)_2]$ ·1.3H <sub>2</sub> O |
|----------------------------------------------------------------------|
| $M_r = 1068.26$                                                      |
| Monoclinic, $P2_1/c$                                                 |
| Hall symbol: -P 2ybc                                                 |
| a = 10.2211 (1)  Å                                                   |
| b = 17.1355 (2) Å                                                    |
| c = 16.4142 (2) Å                                                    |
| $\beta = 125.484 \ (1)^{\circ}$                                      |
| V = 2340.92 (5) Å <sup>3</sup>                                       |
| Z = 2                                                                |
|                                                                      |

#### Data collection

| Bruker APEXII CCD<br>diffractometer      | 38093 measured reflections                                      |
|------------------------------------------|-----------------------------------------------------------------|
| Radiation source: fine-focus sealed tube | 4772 reflections with $I > 2\sigma(I)$                          |
| Graphite monochromator                   | $R_{\rm int} = 0.025$                                           |
| ω scans                                  | $\theta_{\max}^{int} = 27.6^\circ, \ \theta_{\min} = 1.9^\circ$ |
| Absorption correction: multi-scan        | $h = -13 \rightarrow 13$                                        |
| (SADABS; Bruker, 2006)                   | $k = -22 \rightarrow 22$                                        |
| $T_{\min} = 0.814, \ T_{\max} = 0.912$   | $l = -21 \rightarrow 21$                                        |
| Refinement                               |                                                                 |

| Secondary atom site location: difference Fourier           |
|------------------------------------------------------------|
| map                                                        |
| Hydrogen site location: inferred from                      |
| neighbouring sites                                         |
| H-atom parameters constrained                              |
| $w = 1/[\sigma^2(F_o^2) + (0.0477P)^2 + 1.3453P]$          |
| where $P = (F_o^2 + 2F_c^2)/3$                             |
| $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| $\Delta \rho_{\rm max} = 0.68 \text{ e } \text{\AA}^{-3}$  |
| $\Delta \rho_{\rm min} = -0.53 \text{ e } \text{\AA}^{-3}$ |
|                                                            |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|            | x            | у              | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|------------|--------------|----------------|---------------|-----------------------------|-----------|
| Col        | 0.22673 (3)  | -0.467750 (13) | 0.253178 (16) | 0.02436 (8)                 |           |
| <b>S</b> 1 | -0.26808 (6) | -0.54790 (4)   | 0.03145 (4)   | 0.04356 (14)                |           |
| N1         | -0.3385 (2)  | -0.68541 (12)  | -0.05863 (14) | 0.0512 (5)                  |           |
| N2         | 0.04982 (18) | -0.38323 (9)   | 0.15601 (11)  | 0.0316 (3)                  |           |

| N3         | -0.60092 (18) | -0.12730 (9)  | -0.15781 (11) | 0.0317 (3)            |      |
|------------|---------------|---------------|---------------|-----------------------|------|
| N4         | 0.14149 (18)  | -0.47934 (10) | 0.34767 (11)  | 0.0324 (3)            |      |
| 01         | 0.06128 (15)  | -0.55683 (8)  | 0.16874 (10)  | 0.0366 (3)            |      |
| O2         | 0.20011 (18)  | -0.66643 (9)  | 0.23590 (11)  | 0.0506 (4)            |      |
| 03         | -0.54191 (18) | -0.48099 (12) | -0.24881 (12) | 0.0595 (5)            |      |
| 04         | -0.29489 (15) | -0.53055 (8)  | -0.15622(10)  | 0.0327 (3)            |      |
| O1W        | 0.41017 (15)  | -0.55208(8)   | 0.34497 (9)   | 0.0344 (3)            |      |
| H1WB       | 0.3686        | -0.5973       | 0.3268        | 0.041*                |      |
| H1WA       | 0.4812        | -0.5482       | 0.3336        | 0.041*                |      |
| O2W        | 0 3056 (6)    | -0.8235(3)    | 0 2968 (4)    | 0 0716 (13)*          | 0.40 |
| 03W        | -0.7292(11)   | -0.3553(6)    | -0.2320(7)    | 0.082(2)*             | 0.25 |
| C1         | -0.0421(3)    | -0.75259(13)  | 0.2520(1)     | 0.002(2)<br>0.0537(6) | 0.25 |
| H1A        | 0.0564        | -0.7762       | 0.1229        | 0.064*                |      |
| $C^2$      | -0.1648(4)    | -0.79492(14)  | -0.0044(2)    | 0.004                 |      |
| U2<br>Н2 Л | -0.1496       | -0.8467       | -0.0141       | 0.0737 (5)            |      |
| C2         | -0.3083(4)    | -0.75831(15)  | -0.0694(2)    | 0.0661(8)             |      |
|            | 0.3083 (4)    | 0.73631 (13)  | 0.0094 (2)    | 0.0001 (8)            |      |
| пэа        | -0.3893       | -0.7803       | -0.1243       | $0.079^{\circ}$       |      |
| C4         | -0.2204(2)    | -0.04420(12)  | 0.01904(13)   | 0.0330(4)             |      |
|            | -0.0664(2)    | -0.0/500(11)  | 0.08956 (14)  | 0.0345(4)             |      |
| C6         | 0.0760 (2)    | -0.62946 (11) | 0.1/223 (13)  | 0.0314 (4)            |      |
| C/         | -0.4499 (3)   | -0.52819 (15) | -0.09011 (16) | 0.04/4 (5)            |      |
| H/A        | -0.5211       | -0.5727       | -0.1103       | 0.057*                |      |
| H/B        | -0.5031       | -0.4837       | -0.0847       | 0.057*                |      |
| C8         | -0.4259 (2)   | -0.51158 (12) | -0.17142 (14) | 0.0347 (4)            |      |
| C9         | -0.1027 (3)   | -0.26859 (15) | 0.12914 (17)  | 0.0637 (8)            |      |
| H9A        | -0.1169       | -0.2245       | 0.1563        | 0.076*                |      |
| C10        | 0.0229 (3)    | -0.31873 (14) | 0.18932 (16)  | 0.0563 (7)            |      |
| H10A       | 0.0930        | -0.3069       | 0.2570        | 0.068*                |      |
| C11        | -0.0478 (2)   | -0.39688 (11) | 0.05773 (13)  | 0.0334 (4)            |      |
| H11A       | -0.0282       | -0.4403       | 0.0323        | 0.040*                |      |
| C12        | -0.1767 (2)   | -0.34941 (11) | -0.00793 (13) | 0.0346 (4)            |      |
| H12A       | -0.2421       | -0.3614       | -0.0758       | 0.042*                |      |
| C13        | -0.2083 (2)   | -0.28423 (11) | 0.02741 (14)  | 0.0369 (4)            |      |
| C14        | -0.4239 (3)   | -0.19437 (14) | -0.00281 (15) | 0.0474 (5)            |      |
| H14A       | -0.3913       | -0.2030       | 0.0624        | 0.057*                |      |
| C15        | -0.3472 (2)   | -0.23228 (11) | -0.03857 (14) | 0.0359 (4)            |      |
| C16        | -0.5485 (2)   | -0.14378 (13) | -0.06392 (14) | 0.0421 (5)            |      |
| H16A       | -0.5990       | -0.1197       | -0.0383       | 0.051*                |      |
| C17        | -0.5296 (3)   | -0.16573 (12) | -0.19305(15)  | 0.0422 (5)            |      |
| H17A       | -0.5660       | -0.1568       | -0.2590       | 0.051*                |      |
| C18        | -0.4046(3)    | -0.21800(12)  | -0.13694(15)  | 0.0439 (5)            |      |
| H18A       | -0.3595       | -0.2434       | -0.1652       | 0.053*                |      |
| C19        | -0.0124(3)    | -0.46731(18)  | 0 31159 (16)  | 0.0580(7)             |      |
| H19A       | -0.0828       | -0.4523       | 0.2450        | 0.070*                |      |
| C20        | -0.0725(2)    | -0.47589(19)  | 0.36765 (16)  | 0.0623 (8)            |      |
| H20A       | -0.1810       | -0.4673       | 0.3384        | 0.075*                |      |
| C21        | 0.1870(2)     | -0.51257(11)  | 0.50404(14)   | 0.0342(4)             |      |
| H21A       | 0.2596        | -0 5290       | 0 5698        | 0.041*                |      |
| 114171     | 0.2000        | 0.5270        | 0.0000        | 0.0-11                |      |

# supporting information

| C22  | 0.2363 (2) | -0.50319 (11) | 0.44222 (14) | 0.0334 (4) |
|------|------------|---------------|--------------|------------|
| H22A | 0.3429     | -0.5143       | 0.4684       | 0.040*     |
| C23  | 0.0286 (2) | -0.49728 (11) | 0.46761 (13) | 0.0319 (4) |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$     | U <sup>23</sup> |
|-----|--------------|--------------|--------------|--------------|--------------|-----------------|
| Col | 0.01954 (12) | 0.02930 (13) | 0.02172 (12) | 0.00108 (8)  | 0.01053 (10) | 0.00026 (8)     |
| S1  | 0.0376 (3)   | 0.0610 (3)   | 0.0279 (2)   | 0.0119 (2)   | 0.0166 (2)   | -0.0005 (2)     |
| N1  | 0.0453 (10)  | 0.0565 (11)  | 0.0372 (9)   | -0.0174 (9)  | 0.0156 (8)   | -0.0018 (8)     |
| N2  | 0.0287 (7)   | 0.0332 (7)   | 0.0277 (7)   | 0.0085 (6)   | 0.0133 (6)   | 0.0012 (6)      |
| N3  | 0.0272 (7)   | 0.0340 (8)   | 0.0269 (7)   | 0.0054 (6)   | 0.0118 (6)   | 0.0025 (6)      |
| N4  | 0.0243 (7)   | 0.0467 (9)   | 0.0270 (7)   | -0.0038 (6)  | 0.0153 (6)   | -0.0027 (6)     |
| 01  | 0.0280 (7)   | 0.0316 (6)   | 0.0355 (7)   | -0.0012 (5)  | 0.0100 (6)   | -0.0022 (5)     |
| O2  | 0.0419 (8)   | 0.0390 (8)   | 0.0445 (8)   | 0.0039 (6)   | 0.0101 (7)   | 0.0102 (6)      |
| 03  | 0.0285 (8)   | 0.1104 (15)  | 0.0385 (8)   | 0.0196 (8)   | 0.0188 (7)   | 0.0218 (9)      |
| O4  | 0.0257 (6)   | 0.0449 (7)   | 0.0285 (6)   | 0.0045 (5)   | 0.0163 (5)   | -0.0001 (5)     |
| O1W | 0.0265 (6)   | 0.0432 (7)   | 0.0298 (6)   | 0.0052 (5)   | 0.0142 (5)   | 0.0048 (5)      |
| C1  | 0.0587 (14)  | 0.0325 (10)  | 0.0540 (13)  | -0.0024 (10) | 0.0237 (12)  | 0.0045 (9)      |
| C2  | 0.095 (2)    | 0.0312 (11)  | 0.0711 (18)  | -0.0167 (13) | 0.0345 (17)  | -0.0085 (11)    |
| C3  | 0.0711 (18)  | 0.0491 (14)  | 0.0481 (13)  | -0.0264 (13) | 0.0174 (13)  | -0.0067 (11)    |
| C4  | 0.0346 (10)  | 0.0435 (10)  | 0.0276 (8)   | -0.0089 (8)  | 0.0184 (8)   | 0.0004 (7)      |
| C5  | 0.0379 (10)  | 0.0326 (9)   | 0.0317 (9)   | -0.0069 (7)  | 0.0196 (8)   | 0.0025 (7)      |
| C6  | 0.0324 (9)   | 0.0345 (9)   | 0.0262 (8)   | -0.0014 (7)  | 0.0164 (7)   | 0.0043 (7)      |
| C7  | 0.0287 (10)  | 0.0808 (16)  | 0.0351 (10)  | 0.0118 (10)  | 0.0198 (9)   | 0.0087 (10)     |
| C8  | 0.0239 (9)   | 0.0502 (11)  | 0.0280 (8)   | -0.0007 (8)  | 0.0140 (7)   | -0.0029 (8)     |
| C9  | 0.0586 (15)  | 0.0597 (14)  | 0.0353 (11)  | 0.0329 (12)  | 0.0057 (10)  | -0.0140 (10)    |
| C10 | 0.0495 (13)  | 0.0581 (14)  | 0.0293 (10)  | 0.0250 (11)  | 0.0046 (9)   | -0.0102 (9)     |
| C11 | 0.0403 (10)  | 0.0324 (9)   | 0.0287 (8)   | 0.0094 (7)   | 0.0207 (8)   | 0.0026 (7)      |
| C12 | 0.0402 (10)  | 0.0353 (9)   | 0.0240 (8)   | 0.0088 (8)   | 0.0162 (8)   | 0.0023 (7)      |
| C13 | 0.0360 (10)  | 0.0374 (10)  | 0.0292 (9)   | 0.0131 (8)   | 0.0143 (8)   | 0.0026 (7)      |
| C14 | 0.0505 (12)  | 0.0582 (13)  | 0.0276 (9)   | 0.0263 (10)  | 0.0193 (9)   | 0.0095 (9)      |
| C15 | 0.0335 (10)  | 0.0350 (9)   | 0.0294 (9)   | 0.0100 (7)   | 0.0127 (8)   | 0.0010 (7)      |
| C16 | 0.0421 (11)  | 0.0503 (11)  | 0.0334 (10)  | 0.0189 (9)   | 0.0216 (9)   | 0.0063 (8)      |
| C17 | 0.0502 (12)  | 0.0444 (11)  | 0.0301 (9)   | 0.0165 (9)   | 0.0222 (9)   | 0.0083 (8)      |
| C18 | 0.0508 (12)  | 0.0454 (11)  | 0.0371 (10)  | 0.0202 (9)   | 0.0265 (10)  | 0.0073 (9)      |
| C19 | 0.0243 (10)  | 0.123 (2)    | 0.0231 (9)   | -0.0001 (11) | 0.0117 (8)   | 0.0058 (11)     |
| C20 | 0.0190 (9)   | 0.137 (3)    | 0.0276 (10)  | -0.0005 (12) | 0.0119 (8)   | 0.0040 (12)     |
| C21 | 0.0314 (9)   | 0.0408 (10)  | 0.0322 (9)   | 0.0058 (7)   | 0.0195 (8)   | 0.0088 (7)      |
| C22 | 0.0272 (9)   | 0.0401 (10)  | 0.0358 (9)   | 0.0055 (7)   | 0.0200 (8)   | 0.0067 (8)      |
| C23 | 0.0258 (9)   | 0.0428 (10)  | 0.0286 (8)   | -0.0074 (7)  | 0.0166 (7)   | -0.0042 (7)     |

Geometric parameters (Å, °)

| Co1—O4 <sup>i</sup> | 2.0752 (13) | C5—C6  | 1.514 (3) |  |
|---------------------|-------------|--------|-----------|--|
| Co1—O1              | 2.0951 (13) | C7—C8  | 1.518 (3) |  |
| Co1—N2              | 2.1361 (14) | С7—Н7А | 0.9700    |  |
| Col—OlW             | 2.1434 (13) | С7—Н7В | 0.9700    |  |
|                     |             |        |           |  |

| Col—N4                         | 2.1847 (15)          | C9—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.375 (3)            |
|--------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Co1—N3 <sup>ii</sup>           | 2.2141 (15)          | C9—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.390 (3)            |
| S1—C4                          | 1.765 (2)            | С9—Н9А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9300               |
| S1—C7                          | 1.801 (2)            | C10—H10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9300               |
| N1—C3                          | 1.323 (4)            | C11—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.382 (2)            |
| N1—C4                          | 1.340 (3)            | C11—H11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9300               |
| N2                             | 1.331 (2)            | C12—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.380 (3)            |
| N2—C11                         | 1.336 (2)            | C12—H12A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9300               |
| N3—C16                         | 1.335 (2)            | C13—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.482 (3)            |
| N3—C17                         | 1.338 (2)            | C14—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.377 (3)            |
| N3—Co1 <sup>iii</sup>          | 2.2141 (14)          | C14—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.384 (3)            |
| N4—C22                         | 1.330 (2)            | C14—H14A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9300               |
| N4—C19                         | 1.336 (3)            | C15—C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.382 (3)            |
| 01                             | 1.251 (2)            | C16—H16A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9300               |
| $\Omega^2 - C6$                | 1.251(2)             | C17—C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 384 (3)            |
| 03-08                          | 1.231(2)<br>1.243(2) | C17—H17A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9300               |
| 04                             | 1.213(2)<br>1.254(2) | C18—H18A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9300               |
| $04-Co1^{i}$                   | 2.0752(13)           | C19-C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 379 (3)            |
| 01W H1WB                       | 0.8500               | C19H19A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9300               |
|                                | 0.8500               | $C_{20}$ $C_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 388 (3)            |
| C1 $C5$                        | 1 370 (3)            | $C_{20} = C_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0300               |
| C1 - C2                        | 1.379(3)<br>1.302(4) | $C_{20} = H_{20} A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.370(2)             |
| C1 - C2                        | 0.0300               | $C_{21} = C_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.379(2)<br>1.387(2) |
| $C_1$ $C_2$ $C_3$              | 1.366(4)             | $C_{21} = C_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0200               |
| $C_2 = C_3$                    | 1.300 (4)            | $C_{21}$ $H_{21A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9300               |
| C2—H2A                         | 0.9300               | C22—H22A<br>C22—C22iv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9300               |
| C3—H3A                         | 0.9300               | C23—C23 <sup></sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.484 (3)            |
| C4—C5                          | 1.412 (3)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
| O4 <sup>i</sup> Co1O1          | 89.07 (5)            | С8—С7—Н7В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108.6                |
| O4 <sup>i</sup> —Co1—N2        | 87.27 (5)            | S1—C7—H7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108.6                |
| O1—Co1—N2                      | 89.52 (6)            | H7A—C7—H7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 107.5                |
| O4 <sup>i</sup> —Co1—O1W       | 89.06 (5)            | O3—C8—O4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 125.96 (18)          |
| O1—Co1—O1W                     | 90.84 (5)            | O3—C8—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 115.63 (17)          |
| N2—Co1—O1W                     | 176.31 (5)           | O4—C8—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 118.40 (17)          |
| O4 <sup>i</sup> —Co1—N4        | 173.20 (6)           | C10—C9—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 119.52 (19)          |
| 01—Co1—N4                      | 84.38 (6)            | С10—С9—Н9А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120.2                |
| N2—Co1—N4                      | 94.48 (6)            | C13—C9—H9A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120.2                |
| 01W—Co1—N4                     | 89.21 (5)            | N2-C10-C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 123.60 (19)          |
| $O4^{i}$ —Co1—N3 <sup>ii</sup> | 91.36 (5)            | N2-C10-H10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 118.2                |
| 01-Co1-N3 <sup>ii</sup>        | 179.27 (6)           | C9—C10—H10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 118.2                |
| $N^2$ —Co1— $N^{3ii}$          | 89.91 (6)            | $N^2$ —C11—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 122.98 (16)          |
| 01W—Co1—N3 <sup>ii</sup>       | 89.76 (6)            | N2-C11-H11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 118 5                |
| $N4-Co1-N3^{ii}$               | 95 21 (6)            | C12— $C11$ — $H11A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 118.5                |
| C4 = S1 = C7                   | 102.94(11)           | C13 - C12 - C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 119.87 (17)          |
| C3-N1-C4                       | 118 3 (2)            | C13 - C12 - H12A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120.1                |
| C10-N2-C11                     | 117 00 (16)          | C11 - C12 - H12A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120.1                |
| C10 N2 Co1                     | 122 03 (13)          | C12 - C12 | 116 02 (17)          |
| $C_{11} = N_2 = C_{01}$        | 119 88 (12)          | C12 - C13 - C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 122 (17)             |
| 011 112 001                    | 117.00 (14)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 144.21(1/)           |

| C16—N3—C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 116.14 (16)              | C9—C13—C15                            | 120.57 (17)            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------|------------------------|
| C16—N3—Co1 <sup>iii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 123.35 (12)              | C16—C14—C15                           | 119.91 (18)            |
| C17—N3—Co1 <sup>iii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.09 (12)              | C16—C14—H14A                          | 120.0                  |
| C22—N4—C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 115.95 (16)              | C15—C14—H14A                          | 120.0                  |
| C22—N4—Co1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 122.38 (12)              | C18—C15—C14                           | 116.83 (17)            |
| C19—N4—Co1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 121.55 (13)              | C18—C15—C13                           | 122.48 (18)            |
| C6—O1—Co1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 131.70 (12)              | C14—C15—C13                           | 120.68 (18)            |
| C8-04-C01 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 130.24 (12)              | N3—C16—C14                            | 123.75 (18)            |
| Co1—O1W—H1WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 108.2                    | N3—C16—H16A                           | 118.1                  |
| Co1—O1W—H1WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 107.6                    | C14—C16—H16A                          | 118.1                  |
| H1WB—O1W—H1WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 108.2                    | N3-C17-C18                            | 123.70 (18)            |
| C5—C1—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120.1 (2)                | N3—C17—H17A                           | 118.1                  |
| C5—C1—H1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119.9                    | С18—С17—Н17А                          | 118.1                  |
| C2—C1—H1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119.9                    | C15—C18—C17                           | 119.59 (18)            |
| $C_3 - C_2 - C_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 118.1 (2)                | C15—C18—H18A                          | 120.2                  |
| $C_3$ — $C_2$ — $H_2A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 121.0                    | C17—C18—H18A                          | 120.2                  |
| C1 - C2 - H2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 121.0                    | N4-C19-C20                            | 123.60(19)             |
| N1-C3-C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 123.9(2)                 | N4-C19-H19A                           | 118.2                  |
| N1-C3-H3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 118.1                    | $C_{20}$ $C_{19}$ $H_{19A}$           | 118.2                  |
| $C_2 - C_3 - H_3 A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 118.1                    | C19-C20-C23                           | 120 19 (19)            |
| N1 - C4 - C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 122.6 (2)                | C19 - C20 - H20A                      | 110.0                  |
| N1 - C4 - S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 122.0(2)<br>116.49(16)   | $C_{23}$ $C_{20}$ $H_{20A}$           | 119.9                  |
| $C_5 - C_4 - S_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120 88 (14)              | $C_{22} = C_{21} = C_{23}$            | 119.5                  |
| C1 - C5 - C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 117.00(19)               | $C_{22} = C_{21} = C_{23}$            | 120.2                  |
| $C_1 = C_5 = C_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 117.00(17)<br>118.12(10) | $C_{22} = C_{21} = H_{21} \Lambda$    | 120.2                  |
| $C_1 = C_2 = C_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 118.12(19)<br>124 70(17) | $N4-C^{22}-C^{21}$                    | 120.2<br>124.35(17)    |
| $0^{2}$ C6 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 124.70(17)<br>125.36(17) | N4 C22 H22A                           | 117.8                  |
| 02 - 00 - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 125.50(17)<br>117.72(17) | $C_{22} = H_{22}$                     | 117.8                  |
| 02 - 00 - 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 117.72 (17)              | $C_{21} = C_{22} = H_{22A}$           | 117.0                  |
| $C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110.80(10)<br>114.81(14) | $C_{21} = C_{23} = C_{20}$            | 110.10(17)<br>121.7(2) |
| $C_8 = C_7 = H_7 \Lambda$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 108.6                    | $C_{21} - C_{23} - C_{23}$            | 121.7(2)<br>122.1(2)   |
| $C_{0}$ $C_{1}$ $C_{1}$ $C_{1}$ $C_{1}$ $C_{1}$ $C_{2}$ $C_{1}$ $C_{2}$ $C_{1}$ $C_{2}$ $C_{2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 108.6                    | 020-023-025                           | 122.1 (2)              |
| 51-C/-11/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 108.0                    |                                       |                        |
| $O4^{i}$ —Co1—N2—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1351(2)                 | C1-C5-C6-01                           | 164 59 (19)            |
| $01 - C_01 - N_2 - C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 135.8 (2)                | C4-C5-C6-O1                           | -103(3)                |
| N4-Co1-N2-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51 5 (2)                 | C4 = S1 = C7 = C8                     | -75.84(19)             |
| $N3^{ii}$ —Co1—N2—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -437(2)                  | $C_{01}^{i} - 04 - C_{8} - 03$        | -82(3)                 |
| $04^{i}$ Co1 N2 C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49.97 (15)               | $C_{01}^{i} - 04 - C_{8} - C_{7}^{i}$ | 170.55(14)             |
| $01 - C_01 - N_2 - C_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -39.12(15)               | S1-C7-C8-O3                           | -16440(18)             |
| $01W - C_01 - N^2 - C_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 56 5 (9)                 | S1 - C7 - C8 - O4                     | 16.8 (3)               |
| N4-Co1-N2-C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -12344(15)               | $C_{11} N_{2} C_{10} C_{9}$           | 32(4)                  |
| $N3^{ii}$ Co1 N2 C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 123.44(15)               | $C_{01} = N_{2} = C_{10} = C_{9}$     | -171.9(2)              |
| $O4^{i}$ _Co1_N4_C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 99 9 ( <u>4</u> )        | C13 - C9 - C10 - N2                   | -0.7(5)                |
| $01 - C_01 - N_4 - C_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 115 53 (15)              | C10 - C10 - C10 - C12                 | -30(3)                 |
| $N_{-Co1} N_{-C22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -155 40 (15)             | $C_{10} = N_2 = C_{11} = C_{12}$      | 172 10 (15)            |
| 112 - 01 - 114 - 022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24 61 (15)               | $N_2 - C_{11} - C_{12} - C_{13}$      | 0.5(3)                 |
| $N3^{ii}$ Col N/ C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -65.08(16)               | $C_{11} C_{12} C_{13} C_{13} C_{14}$  | 20(3)                  |
| $\frac{1}{10} - \frac{1}{10} $ | -760(5)                  | $C_{11} = C_{12} = C_{13} = C_{23}$   | 2.0(3)<br>-178.22(10)  |
| 04—001—IN4—019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -70.0(3)                 | 011-012-013-013                       | -1/0.22(19)            |

| O1—Co1—N4—C19                | -60.33 (19)  | C10—C9—C13—C12                 | -1.9 (4)     |
|------------------------------|--------------|--------------------------------|--------------|
| N2-Co1-N4-C19                | 28.75 (19)   | C10—C9—C13—C15                 | 178.3 (3)    |
| O1W-Co1-N4-C19               | -151.25 (19) | C16—C14—C15—C18                | -1.5 (3)     |
| N3 <sup>ii</sup> —Co1—N4—C19 | 119.06 (19)  | C16—C14—C15—C13                | 177.3 (2)    |
| O4 <sup>i</sup> —Co1—O1—C6   | 85.94 (17)   | C12-C13-C15-C18                | -33.7 (3)    |
| N2—Co1—O1—C6                 | 173.22 (17)  | C9-C13-C15-C18                 | 146.1 (3)    |
| O1W—Co1—O1—C6                | -3.11 (17)   | C12-C13-C15-C14                | 147.5 (2)    |
| N4—Co1—O1—C6                 | -92.23 (17)  | C9-C13-C15-C14                 | -32.7 (3)    |
| N3 <sup>ii</sup> —Co1—O1—C6  | -148 (4)     | C17—N3—C16—C14                 | 2.8 (3)      |
| C5-C1-C2-C3                  | -0.8 (4)     | Co1 <sup>iii</sup> —N3—C16—C14 | -169.71 (18) |
| C4—N1—C3—C2                  | 1.9 (4)      | C15-C14-C16-N3                 | -1.0 (4)     |
| C1-C2-C3-N1                  | -1.3 (5)     | C16—N3—C17—C18                 | -2.2 (3)     |
| C3—N1—C4—C5                  | -0.4 (3)     | Co1 <sup>iii</sup> —N3—C17—C18 | 170.62 (18)  |
| C3—N1—C4—S1                  | -178.79 (19) | C14—C15—C18—C17                | 2.1 (3)      |
| C7—S1—C4—N1                  | -16.68 (17)  | C13—C15—C18—C17                | -176.7 (2)   |
| C7—S1—C4—C5                  | 164.86 (15)  | N3—C17—C18—C15                 | -0.3 (4)     |
| C2-C1-C5-C4                  | 2.1 (3)      | C22—N4—C19—C20                 | 2.2 (4)      |
| C2-C1-C5-C6                  | -173.2 (2)   | Co1—N4—C19—C20                 | 178.3 (2)    |
| N1-C4-C5-C1                  | -1.6 (3)     | N4—C19—C20—C23                 | 0.8 (5)      |
| S1—C4—C5—C1                  | 176.78 (16)  | C19—N4—C22—C21                 | -2.8 (3)     |
| N1-C4-C5-C6                  | 173.38 (18)  | Co1—N4—C22—C21                 | -178.90 (15) |
| S1—C4—C5—C6                  | -8.3 (3)     | C23—C21—C22—N4                 | 0.6 (3)      |
| Co1—O1—C6—O2                 | 4.9 (3)      | C22—C21—C23—C20                | 2.4 (3)      |
| Co1—O1—C6—C5                 | -172.18 (12) | C22-C21-C23-C23 <sup>iv</sup>  | -177.0 (2)   |
| C1—C5—C6—O2                  | -12.7 (3)    | C19—C20—C23—C21                | -3.0 (4)     |
| C4—C5—C6—O2                  | 172.36 (18)  | C19—C20—C23—C23 <sup>iv</sup>  | 176.3 (3)    |
|                              |              |                                |              |

Symmetry codes: (i) -x, -y-1, -z; (ii) x+1, -y-1/2, z+1/2; (iii) x-1, -y-1/2, z-1/2; (iv) -x, -y-1, -z+1.

## Hydrogen-bond geometry (Å, °)

| D—H···A                                      | D—H  | Н…А  | D····A    | <i>D</i> —H··· <i>A</i> |
|----------------------------------------------|------|------|-----------|-------------------------|
| O1 <i>W</i> —H1 <i>WA</i> ···O3 <sup>i</sup> | 0.85 | 1.89 | 2.663 (2) | 150                     |
| O1 <i>W</i> —H1 <i>WB</i> ···O2              | 0.85 | 1.90 | 2.682 (2) | 152                     |

Symmetry code: (i) -x, -y-1, -z.