[Journal logo]

Volume 69 
Part 7 
Page i41  
July 2013  

Received 3 June 2013
Accepted 14 June 2013
Online 22 June 2013

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](Si-O) = 0.002 Å
R = 0.035
wR = 0.083
Data-to-parameter ratio = 16.8
Details
Open access

Redetermination of katayamalite, KLi3Ca7Ti2(SiO3)12(OH)2

aDepartment of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, Arizona 85721-0077, USA, and b122 Dublin Street, Peterborough, Ontario, K9H 3A9, Canada
Correspondence e-mail: mabadean@terra.com.br

The crystal structure of katayamalite, ideally KLi3Ca7Ti2(SiO3)12(OH)2 (potassium trilithium heptacalcium dititanium dodecasilicate dihydroxide), was previously reported in triclinic symmetry (C-1), with isotropic displacement parameters for all atoms and without the H-atom position [Kato & Murakami (1985[Kato, T. & Murakami, N. (1985). Mineral. J. 12, 206-217.]). Mineral. J. 12, 206-217]. The present study redetermines the katayamalite structure with monoclinic symmetry (space group C2/c) based on single-crystal X-ray diffraction data from a sample from the type locality, Iwagi Island, Ehime Prefecture, Japan, with anisotropic displacement parameters for all non-H atoms, and with the H atoms located by difference Fourier analysis. The structure of katayamalite contains a set of six-membered silicate rings interconnected by sheets of Ca atoms on one side and by an ordered mixture of Li, Ti and K atoms on the other side, forming layers which are stacked normal to (001). From the eight different metal sites, three are located on special positions, viz. one K and one Li atom on twofold rotation axes and one Ca atom on an inversion center. The Raman spectrum of kataymalite shows a band at 3678 cm-1, similar to that observed for hydroxyl-amphiboles, indicating no or very weak hydrogen bonding.

Related literature

For previous work on katayamalite, see: Kato & Murakami (1985[Kato, T. & Murakami, N. (1985). Mineral. J. 12, 206-217.]). For minerals isostructural with or similar to katayamalite, see: Dusmatov et al. (1975[Dusmatov, V. D., Semenov, E. I., Khomayakov, A. P., Bykova, A. V. & Dzharfarov, N. K. (1975). Zap. Vses. Mineral. Obshch. 104, 580-582.]); Fleischer et al. (1976[Fleischer, M., Pabst, A. & Cabri, L. J. (1976). Am. Mineral. 61, 1053-1056.]); Menchetti & Sabelli (1979[Menchetti, S. & Sabelli, C. (1979). Am. Mineral. 64, 383-389.]); Baur & Kassner (1992[Baur, W. H. & Kassner, D. (1992). Eur. J. Mineral. 4, 839-841.]); Pautov et al. (2010[Pautov, L. A., Agakhanov, A. A., Karpenko, V. Y. & Gafurov, F. G. (2010). New Data on Minerals, 45, 5-16.]). For Raman spectroscopic measurements on cyclosilicates and amphyboles, see: Alvarez & Coy-Yll (1978[Alvarez, M. A. & Coy-Yll, R. (1978). Spectrochim. Acta Part A, 34, 899-908.]); Hawthorne (1983[Hawthorne, F. C. (1983). Can. Mineral. 21, 173-480.]); Kim et al. (1993[Kim, C. C., Bell, M. I. & McKeown, D. A. (1993). Phys. Rev. B, 47, 7869-7877.]); Yang & Evans (1996[Yang, H. & Evans, B. W. (1996). Am. Mineral. 81, 1117-1125.]); Frost & Pinto (2007[Frost, R. L. & Pinto, C. (2007). J. Raman Spectrosc. 38, 841-845.]).

Experimental

Crystal data
  • KLi3Ca7Ti2(SiO3)12(OH)2

  • Mr = 1383.38

  • Monoclinic, C 2/c

  • a = 16.9093 (10) Å

  • b = 9.7287 (5) Å

  • c = 20.9019 (12) Å

  • [beta] = 112.396 (3)°

  • V = 3179.1 (3) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 2.36 mm-1

  • T = 293 K

  • 0.06 × 0.05 × 0.05 mm

Data collection
  • Bruker X8 APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.871, Tmax = 0.891

  • 26611 measured reflections

  • 4873 independent reflections

  • 3632 reflections with I > 2[sigma](I)

  • Rint = 0.052

Refinement
  • R[F2 > 2[sigma](F2)] = 0.035

  • wR(F2) = 0.083

  • S = 1.01

  • 4873 reflections

  • 290 parameters

  • 1 restraint

  • All H-atom parameters refined

  • [Delta][rho]max = 0.83 e Å-3

  • [Delta][rho]min = -0.56 e Å-3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Xtal-Draw (Downs & Hall-Wallace, 2003[Downs, R. T. & Hall-Wallace, M. (2003). Am. Mineral. 88, 247-250.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2749 ).


Acknowledgements

The authors gratefully acknowledge the Arizona Science Foundation, and the Brazilian government (CNPq 202469/ 2011-5), for the funding support of this study.

References

Alvarez, M. A. & Coy-Yll, R. (1978). Spectrochim. Acta Part A, 34, 899-908.  [CrossRef]
Baur, W. H. & Kassner, D. (1992). Eur. J. Mineral. 4, 839-841.  [ChemPort]
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Downs, R. T. & Hall-Wallace, M. (2003). Am. Mineral. 88, 247-250.  [ChemPort]
Dusmatov, V. D., Semenov, E. I., Khomayakov, A. P., Bykova, A. V. & Dzharfarov, N. K. (1975). Zap. Vses. Mineral. Obshch. 104, 580-582.  [ChemPort]
Fleischer, M., Pabst, A. & Cabri, L. J. (1976). Am. Mineral. 61, 1053-1056.
Frost, R. L. & Pinto, C. (2007). J. Raman Spectrosc. 38, 841-845.  [Web of Science] [CrossRef] [ChemPort]
Hawthorne, F. C. (1983). Can. Mineral. 21, 173-480.  [ChemPort]
Kato, T. & Murakami, N. (1985). Mineral. J. 12, 206-217.  [CrossRef] [ChemPort]
Kim, C. C., Bell, M. I. & McKeown, D. A. (1993). Phys. Rev. B, 47, 7869-7877.  [CrossRef] [ChemPort]
Menchetti, S. & Sabelli, C. (1979). Am. Mineral. 64, 383-389.  [ChemPort]
Pautov, L. A., Agakhanov, A. A., Karpenko, V. Y. & Gafurov, F. G. (2010). New Data on Minerals, 45, 5-16.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Yang, H. & Evans, B. W. (1996). Am. Mineral. 81, 1117-1125.  [ChemPort]


Acta Cryst (2013). E69, i41  [ doi:10.1107/S1600536813016620 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.