metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[tetra­butyl­ammonium [chlorido­hexa­methyl-μ3-sulfato-distannate(IV)]]

aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bInstitut Européen des Membranes, Université de Montpellier II, 34000 Montpellier, France
*Correspondence e-mail: tijchimia@yahoo.fr

(Received 6 June 2013; accepted 15 June 2013; online 22 June 2013)

In the structure of the title coordination polymer, {(C16H36N)[Sn2(CH3)6Cl(SO4)]}n, the two independent SnIV atoms are coordinated in a trigonal–bipyramidal manner by three methyl groups in the equatorial plane and in the axial positions by either two O atoms of bridging SO42− anions or by a Cl atom and one O atom of a bridging SO42− anion, respectively. The [Sn2(CH3)6Cl(SO4)] anion forms an infinite zigzag chain parallel to the c axis. The cations are situated between these chains. Two of the four butyl groups of the cation are partially disordered over two sets of sites with site occupancies of 0.79 (2):0.21 (2) and 0.75 (2):0.25 (2), respectively. Weak C—H⋯O hydrogen-bonding inter­actions help to consolidate the crystal packing.

Related literature

For related structures, see: Molloy et al. (1989[Molloy, K. C., Quill, K., Cunningham, D. C., McArdle, P. & Higgins, T. (1989). J. Chem. Soc. Dalton Trans. pp. 267-273.]); Zhang et al. (2008[Zhang, J., Ma, C. & Zhang, R. (2008). J. Inorg. Organomet. Polym. Mater. 18, 296-299.]); Sadiq-ur-Rehman et al. (2004[Sadiq-ur-Rehman,, Ali, S., Mazhar, M. & Parvez, M. (2004). Acta Cryst. E60, m1394-m1396.]); Aziz-ur-Rehman et al. (2006[Aziz-ur-Rehman, Ali, S., Najam-ul-Haq, M., Shahzadi, S. & Wurst, K. (2006). Acta Cryst. E62, m451-m453.]); Diallo et al. (2009[Diallo, W., Diassé-Sarr, A., Diop, L., Mahieu, B., Biesemans, M., Willem, R., Kociok- Köhn, G. & Molloy, K. C. (2009). SCSCC6, X, 207-212.]); Diop et al. (2012[Diop, T., Diop, L. & Lee, A. van der (2012). Acta Cryst. E68, m1380-m1381.]). For details of the use of constraints and restraints during the structure refinement, see: Cooper et al. (2010[Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100-1107.], 2012[Cooper, R. I., Thorn, A. & Watkin, D. J. (2012). J. Appl. Cryst. 45, 1057-1060.]). For background to the weighting schemes used in the refinement, see: Prince (1982[Prince, E. (1982). In Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]); Watkin (1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.]).

[Scheme 1]

Experimental

Crystal data
  • (C16H36N)[Sn2(CH3)6Cl(SO4)]

  • Mr = 701.60

  • Orthorhombic, A b a 2

  • a = 27.2051 (6) Å

  • b = 20.4336 (5) Å

  • c = 11.4370 (2) Å

  • V = 6357.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.75 mm−1

  • T = 175 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Agilent Xcalibur (Sapphire3, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.651, Tmax = 1.000

  • 59083 measured reflections

  • 8068 independent reflections

  • 7179 reflections with I > 2.0σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.053

  • S = 1.07

  • 7179 reflections

  • 301 parameters

  • 33 restraints

  • H-atom parameters constrained

  • Δρmax = 1.44 e Å−3

  • Δρmin = −2.06 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3709 Friedel pairs

  • Flack parameter: 0.05 (4)

Table 1
Selected bond lengths (Å)

Sn1—C3 2.112 (7)
Sn1—C4 2.124 (7)
Sn1—C5 2.117 (7)
Sn1—Cl2 2.5561 (18)
Sn1—O6 2.345 (4)
Sn11—C12 2.090 (7)
Sn11—C13 2.108 (6)
Sn11—C14 2.088 (7)
Sn11—O9i 2.269 (5)
Sn11—O10 2.286 (5)
Symmetry code: (i) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H161⋯O8ii 0.98 2.50 3.386 (18) 150 (1)
C28—H281⋯O8ii 0.97 2.43 3.195 (18) 136 (1)
C25—H251⋯O8ii 0.95 2.48 3.434 (18) 175 (1)
Symmetry code: (ii) [x, y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Among organotin(IV) complexes, a number of trimethyltin derivatives form polymeric structures with trigonal bipyramidal geometry around the SnIV atom, e.g. as reported by Molloy et al. (1989); Sadiq-ur-Rehman et al. (2004); Aziz-ur-Rehman et al. (2006); Zhang et al. (2008).

The title compound, {(C16H36N)[Sn2(CH3)6Cl(SO4)]}n, crystallizes with one tetrabutylammonium cation, Bu4N+, and one organotin(IV) complex anion in the asymmetric unit (Fig. 1). The two independent SnIV atoms within the trans-OXSnC3 (X = O, Cl) moieties have a distorted trigonal-bipyramidal environment. The axial positions involve either two O atoms of different sulfate anions [Sn11], or one O atom of a sulfate anion and a Cl atom [Sn1]; both SnIV atoms are bonded to three methyl groups in equatorial positions. The axial angle O10—Sn11—O9 is 176.23 (15)° and is more distorted from the ideal angle of linearity compared to Cl2—Sn1—O6 (177.89 (12)°). The axial Sn—O distances (Sn1—O6 2.345 (4) Å; Sn11—O10 2.286 (5) Å; Sn11—O9 2.269 (5) Å; Table 1) are shorter than the Sn—O distance of 2.450 (5) Å in the structure of the related compound (Bu4N)[Sn(CH3)3Cl(HSO4)] (Diallo et al., 2009), but are in the excepted range [2.262 (2)–2.305 (2) Å] found in (Bu4N)[Sn3(CH3)9(SO4)2] (Diop et al., 2012).

The [Sn2(CH3)6Cl(SO4)]- anionic units in the title compound assemble into an infinite zigzag chain parallet to the c-axis formed by (SnMe3) units bridged by SO42- units (Fig. 2). The SO42- µ3-bridging anion itself bonds to a third (SnMe3)Cl unit. The [Sn2(CH3)6Cl(SO4)]- chains are separated by Bu4N+ cations as to form distinct layers parallel to the bc plane (Fig. 3). Weak C—H···O hydrogen bond interactions (Table 2) are present between the sulfate O8 atoms and butyl chains of the Bu4N+ cations.

Related literature top

For related structures, see: Molloy et al. (1989); Zhang et al. (2008); Sadiq-ur-Rehman et al. (2004); Aziz-ur-Rehman et al. (2006); Diallo et al. (2009); Diop et al. (2012). For details of the use of constraints and restraints during the structure refinement, see: Cooper et al. (2010, 2012). For background to the weighting schemes used in the refinement, see: Prince (1982); Watkin (1994).

Experimental top

Ethanolic solutions containing (Bu4N)HSO4 (1.26 g, 4 mmol) and SnMe3Cl (1.59 g, 8 mmol) were mixed and stirred at room temperature for more than 1 h. After removing the precipitate, the filtrate was allowed to evaporate to yield colourless crystals of the title compound. The overall reaction is: (Bu4N)HSO4 + 2SnMe3Cl (Bu4N)[Sn2(CH3)6Cl(SO4)] + HCl

Refinement top

Most of the H atoms were located in a difference map, but they were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints (Cooper et al., 2010). The severe disorder in two of the four butyl chains of the tetrabutylammonium cation was treated by introducing a new carbon site and refining the occupancies of the two sets of sites. Restraints on the interatomic distances and on the anisotropic atomic displacement parameters were necessary in order to obtain a reasonable geometry. Initially shift limiting restraints were applied but in the final stages of the refinement removed. It proved also be necessary to apply interatomic distance restraints between pairs of non-splitted carbon atoms. Asymmetric atomic displacement restraints were used for the atomic displacement parameters of the disordered carbon atoms (Cooper et al., 2012). The size and shape of other carbon atoms in the butyl chains suggest that they are most probably disordered as well, but the disorder does not appear to be well-resolved, and it could not be modelled satisfactorily. The tree reflections (0 2 0), (1 1 1) and (2 0 0) have been omitted from the refinement, because they were found to be partially masked by the beamstop. The highest positive difference electron density, 1.44 e- Å-3, is found at 0.42 Å from C20, whereas the largest negative electron density, -2.06 e- Å-3, is found at 0.83 Å from C14.

Structure description top

Among organotin(IV) complexes, a number of trimethyltin derivatives form polymeric structures with trigonal bipyramidal geometry around the SnIV atom, e.g. as reported by Molloy et al. (1989); Sadiq-ur-Rehman et al. (2004); Aziz-ur-Rehman et al. (2006); Zhang et al. (2008).

The title compound, {(C16H36N)[Sn2(CH3)6Cl(SO4)]}n, crystallizes with one tetrabutylammonium cation, Bu4N+, and one organotin(IV) complex anion in the asymmetric unit (Fig. 1). The two independent SnIV atoms within the trans-OXSnC3 (X = O, Cl) moieties have a distorted trigonal-bipyramidal environment. The axial positions involve either two O atoms of different sulfate anions [Sn11], or one O atom of a sulfate anion and a Cl atom [Sn1]; both SnIV atoms are bonded to three methyl groups in equatorial positions. The axial angle O10—Sn11—O9 is 176.23 (15)° and is more distorted from the ideal angle of linearity compared to Cl2—Sn1—O6 (177.89 (12)°). The axial Sn—O distances (Sn1—O6 2.345 (4) Å; Sn11—O10 2.286 (5) Å; Sn11—O9 2.269 (5) Å; Table 1) are shorter than the Sn—O distance of 2.450 (5) Å in the structure of the related compound (Bu4N)[Sn(CH3)3Cl(HSO4)] (Diallo et al., 2009), but are in the excepted range [2.262 (2)–2.305 (2) Å] found in (Bu4N)[Sn3(CH3)9(SO4)2] (Diop et al., 2012).

The [Sn2(CH3)6Cl(SO4)]- anionic units in the title compound assemble into an infinite zigzag chain parallet to the c-axis formed by (SnMe3) units bridged by SO42- units (Fig. 2). The SO42- µ3-bridging anion itself bonds to a third (SnMe3)Cl unit. The [Sn2(CH3)6Cl(SO4)]- chains are separated by Bu4N+ cations as to form distinct layers parallel to the bc plane (Fig. 3). Weak C—H···O hydrogen bond interactions (Table 2) are present between the sulfate O8 atoms and butyl chains of the Bu4N+ cations.

For related structures, see: Molloy et al. (1989); Zhang et al. (2008); Sadiq-ur-Rehman et al. (2004); Aziz-ur-Rehman et al. (2006); Diallo et al. (2009); Diop et al. (2012). For details of the use of constraints and restraints during the structure refinement, see: Cooper et al. (2010, 2012). For background to the weighting schemes used in the refinement, see: Prince (1982); Watkin (1994).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of the title compound, showing the numbering scheme and displacement ellipsoids drawn at the 50% probability level. For the disordered part of the cation, only the mojor component is displayed. H atoms are shown as spheres of arbitary radius.
[Figure 2] Fig. 2. A view of the polymeric chain of the organotin(IV) complex anion, [Sn2(CH3)6Cl(SO4)]-; displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. A view of the packing of the title compound. Hydrogen atoms have been omitted for clarity.
Poly[tetrabutylammonium [chloridohexamethyl-µ3-sulfato-distannate(IV)]] top
Crystal data top
(C16H36N)[Sn2(CH3)6Cl(SO4)]F(000) = 2864
Mr = 701.60Dx = 1.466 Mg m3
Orthorhombic, Aba2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: A 2 -2acCell parameters from 17152 reflections
a = 27.2051 (6) Åθ = 2.0–27.7°
b = 20.4336 (5) ŵ = 1.75 mm1
c = 11.4370 (2) ÅT = 175 K
V = 6357.8 (3) Å3Prism, colourless
Z = 80.25 × 0.20 × 0.15 mm
Data collection top
Agilent Xcalibur (Sapphire3, Gemini)
diffractometer
8068 independent reflections
Radiation source: Enhance (Mo) X-ray Source7179 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 16.0143 pixels mm-1θmax = 29.4°, θmin = 1.5°
ω scansh = 3734
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 2726
Tmin = 0.651, Tmax = 1.000l = 1515
59083 measured reflections
Refinement top
Refinement on FHydrogen site location: difference Fourier map
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.053 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 13.1 -3.14 6.69 3.90 -2.02
wR(F2) = 0.053(Δ/σ)max = 0.001
S = 1.07Δρmax = 1.44 e Å3
7179 reflectionsΔρmin = 2.06 e Å3
301 parametersAbsolute structure: Flack (1983), 3709 Friedel pairs
33 restraintsAbsolute structure parameter: 0.05 (4)
Primary atom site location: iterative
Crystal data top
(C16H36N)[Sn2(CH3)6Cl(SO4)]V = 6357.8 (3) Å3
Mr = 701.60Z = 8
Orthorhombic, Aba2Mo Kα radiation
a = 27.2051 (6) ŵ = 1.75 mm1
b = 20.4336 (5) ÅT = 175 K
c = 11.4370 (2) Å0.25 × 0.20 × 0.15 mm
Data collection top
Agilent Xcalibur (Sapphire3, Gemini)
diffractometer
8068 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
7179 reflections with I > 2.0σ(I)
Tmin = 0.651, Tmax = 1.000Rint = 0.049
59083 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.053Δρmax = 1.44 e Å3
S = 1.07Δρmin = 2.06 e Å3
7179 reflectionsAbsolute structure: Flack (1983), 3709 Friedel pairs
301 parametersAbsolute structure parameter: 0.05 (4)
33 restraints
Special details top

Refinement. Friedif = 325.1 Estimated Friedel difference = 106.9462 f computed from scattering factors, including f-prime

Current Do—Dc R-factor (%)= 79.99

No of Reflections processed = 7181 No of Friedel Pairs found = 3241 No of Friedel Pairs used = 3241 No of Unpaired Reflections = 375 No of Centric Reflections = 324 Flack parameter obtained from original refinement Hooft parameter obtained with Flack x set to zero Reflections only used if /Fo+ - Fo-/ < 99999.00 * /Fc+ - Fc-/ Friedif = 325.12 Acta A63, (2007), 257–265 Flack & Shmueli (2007) recommend a value >200 for general structures and >80 for enantiopure crystals

Flack Parameter & su 0.0477 0.0352 Hooft Parameter & su 0.0130 0.0149 Ton G & su 0.9739 0.0299

No of reflections for which delta(Fo) has same sign as delta(Fc) Same sign Opposite sign 2050 1191

For an enantiopure material, there are 2 choices, P2 P2(correct) 1.0000 i.e. 0.100000E+01

If 50:50 twinning is possible, there are 3 choices, P3 P3(correct) 1.0000 i.e. 0.100000E+01 P3(rac-twin) 0.0000 i.e. 0.000000E+00 P3(inverse) 0.0000 i.e. 0.000000E+00 G 0.9739 G S.U. 0.0299 FLEQ 0.0130 FLEQ S.U. 0.0149 i.e. 0.149430E-01

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.095395 (14)0.642868 (19)0.30555 (17)0.0371
Cl20.03842 (7)0.72492 (9)0.2051 (2)0.0553
C30.0556 (3)0.5604 (4)0.2468 (8)0.0574
C40.0795 (3)0.6783 (4)0.4760 (6)0.0567
C50.1567 (3)0.6826 (4)0.2163 (8)0.0594
O60.14856 (17)0.5707 (2)0.4025 (4)0.0407
S70.18192 (5)0.51883 (7)0.3647 (2)0.0326
O80.15838 (16)0.4724 (2)0.2867 (4)0.0428
O90.22483 (15)0.5494 (2)0.3060 (4)0.0395
O100.19910 (16)0.4841 (2)0.4713 (4)0.0398
Sn110.239704 (13)0.516838 (18)0.63624 (17)0.0326
C120.1884 (3)0.5899 (4)0.6739 (6)0.0512
C130.3026 (2)0.5367 (5)0.5346 (6)0.0503
C140.2271 (3)0.4218 (3)0.6961 (7)0.0549
N150.1078 (2)0.8008 (4)0.1571 (6)0.0660
C160.1614 (3)0.8095 (5)0.1593 (8)0.0694
C170.1865 (4)0.7718 (5)0.0667 (8)0.0909
C180.2411 (4)0.7755 (8)0.0881 (16)0.1209
C190.2674 (8)0.7363 (10)0.0005 (16)0.1779
C200.0925 (5)0.7338 (4)0.1953 (10)0.08470.75 (2)
C210.0846 (4)0.6772 (5)0.1147 (8)0.0905
C220.0556 (4)0.6258 (4)0.1772 (8)0.0845
C230.0525 (8)0.5731 (10)0.0870 (15)0.2003
C240.0770 (4)0.8207 (5)0.0658 (9)0.0760
C250.0910 (4)0.8850 (5)0.0131 (9)0.08440.79 (2)
C260.0555 (5)0.9121 (6)0.0743 (15)0.1389
C270.0722 (5)0.9755 (5)0.1224 (15)0.1060
C280.0855 (4)0.8509 (6)0.2424 (8)0.0762
C290.1037 (4)0.8465 (5)0.3628 (8)0.0891
C300.0773 (7)0.8833 (9)0.4543 (9)0.1188
C310.0985 (6)0.8812 (9)0.5722 (12)0.1342
C2510.0409 (7)0.8720 (12)0.029 (2)0.08420.21 (2)
C2010.0734 (7)0.7488 (5)0.115 (3)0.08250.25 (2)
H1610.16850.85630.14890.0840*
H1620.17330.79470.23550.0843*
H1710.17830.78930.00920.1081*
H1720.17680.72680.07210.1082*
H2310.03610.53600.12060.2980*
H2320.03430.58830.02070.2980*
H2330.08510.56060.06340.2980*
H2710.05151.01020.09370.1599*
H2720.10530.98330.09770.1599*
H2730.07120.97480.20630.1600*
H410.10650.66990.52700.0864*
H420.07310.72480.47380.0860*
H430.05110.65600.50600.0862*
H310.06310.52390.29490.0852*
H320.02110.56960.25140.0851*
H330.06450.55080.16660.0850*
H510.15090.72790.20130.0890*
H520.16070.66000.14370.0891*
H530.18550.67730.26250.0892*
H1210.20560.63010.68640.0762*
H1220.17050.57800.74320.0765*
H1230.16640.59500.60840.0760*
H1410.25420.40640.74090.0820*
H1420.19790.42210.74260.0822*
H1430.22190.39350.63050.0822*
H1310.30440.50740.46830.0762*
H1320.33160.53110.58060.0760*
H1330.30110.58090.50770.0760*
H2210.02350.64290.19720.1000*
H2220.07150.61070.24810.0999*
H3010.07690.92900.43170.1441*
H3020.04380.86640.45780.1442*
H2910.13710.86370.36230.1052*
H2920.10370.80060.38550.1051*
H2810.09080.89500.21390.0911*
H2820.05030.84190.24600.0910*
H1810.25190.82050.08420.1501*
H1820.24820.75800.16520.1502*
H2510.10810.90920.07170.1240*0.79 (2)
H2520.11360.88660.05080.1240*0.79 (2)
H25110.01490.88540.08080.1240*0.21 (2)
H25120.01430.84650.00150.1240*0.21 (2)
H2010.06960.73370.25820.1321*0.75 (2)
H2020.12610.72140.20430.1319*0.75 (2)
H20110.07440.72790.04010.1290*0.25 (2)
H20120.03810.75010.11250.1290*0.25 (2)
H2410.04140.81040.01620.1181*0.79 (2)
H2420.08190.80140.00990.1122*0.79 (2)
H2430.10350.82740.00730.1180*0.21 (2)
H2440.07640.77220.01570.1205*0.21 (2)
H2110.11570.66380.08210.1384*0.75 (2)
H2120.11700.66170.09490.1383*0.75 (2)
H2130.11810.66470.09910.1381*0.25 (2)
H2140.11690.66490.08850.1381*0.25 (2)
H3110.09270.92200.61080.2010*
H3120.13320.87310.56700.2010*
H3130.08310.84670.61590.2011*
H1910.29590.71720.03500.2810*
H1920.27720.76430.06360.2810*
H1930.24610.70240.02890.2809*
H2610.02470.91840.03680.1704*0.79 (2)
H2620.05180.88170.13660.1704*0.79 (2)
H2630.02690.90620.12070.1704*0.21 (2)
H2640.08120.88510.10330.1704*0.21 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.04077 (18)0.03904 (18)0.03139 (16)0.00380 (16)0.00108 (18)0.00268 (18)
Cl20.0568 (10)0.0501 (9)0.0589 (10)0.0069 (8)0.0059 (8)0.0132 (8)
C30.055 (4)0.051 (4)0.066 (5)0.010 (3)0.023 (4)0.000 (3)
C40.077 (5)0.065 (5)0.028 (3)0.001 (4)0.000 (3)0.008 (3)
C50.056 (4)0.062 (5)0.060 (4)0.008 (4)0.008 (4)0.026 (4)
O60.046 (2)0.051 (2)0.0252 (19)0.005 (2)0.0002 (17)0.0042 (17)
S70.0359 (7)0.0386 (7)0.0232 (6)0.0024 (6)0.0004 (5)0.0037 (5)
O80.046 (2)0.050 (2)0.032 (2)0.0083 (18)0.0009 (17)0.0023 (18)
O90.0439 (19)0.047 (2)0.0278 (17)0.0062 (17)0.0002 (19)0.002 (2)
O100.042 (2)0.044 (2)0.0330 (19)0.0026 (18)0.0010 (17)0.0058 (19)
Sn110.03353 (15)0.03812 (17)0.02608 (14)0.00369 (15)0.00169 (16)0.00763 (18)
C120.047 (4)0.073 (5)0.034 (3)0.024 (3)0.006 (2)0.010 (3)
C130.038 (3)0.087 (6)0.026 (3)0.018 (3)0.007 (2)0.004 (3)
C140.075 (5)0.036 (3)0.053 (4)0.004 (3)0.023 (4)0.007 (3)
N150.065 (4)0.088 (5)0.045 (3)0.027 (4)0.002 (3)0.023 (3)
C160.073 (5)0.068 (5)0.067 (5)0.009 (4)0.009 (4)0.009 (4)
C170.165 (13)0.059 (5)0.048 (5)0.004 (6)0.016 (6)0.007 (4)
C180.089 (9)0.116 (11)0.158 (18)0.032 (9)0.018 (9)0.041 (11)
C190.22 (2)0.145 (16)0.165 (19)0.102 (16)0.116 (18)0.086 (15)
C200.077 (7)0.126 (12)0.051 (6)0.019 (8)0.022 (7)0.020 (9)
C210.085 (8)0.108 (9)0.079 (7)0.001 (6)0.011 (5)0.029 (7)
C220.109 (8)0.089 (7)0.055 (6)0.029 (6)0.024 (5)0.039 (5)
C230.19 (2)0.33 (3)0.086 (11)0.14 (2)0.003 (12)0.036 (16)
C240.082 (6)0.082 (7)0.063 (5)0.004 (5)0.021 (5)0.017 (5)
C250.082 (8)0.128 (12)0.044 (6)0.059 (8)0.006 (5)0.023 (7)
C260.088 (8)0.052 (6)0.28 (2)0.017 (5)0.038 (12)0.018 (9)
C270.125 (10)0.067 (6)0.126 (11)0.009 (6)0.045 (9)0.050 (7)
C280.073 (6)0.094 (7)0.061 (5)0.002 (5)0.006 (4)0.011 (5)
C290.093 (7)0.063 (5)0.112 (9)0.022 (5)0.045 (7)0.030 (6)
C300.160 (13)0.131 (13)0.066 (7)0.059 (11)0.028 (8)0.000 (7)
C310.112 (11)0.129 (12)0.161 (17)0.027 (10)0.037 (11)0.076 (12)
C2510.081 (4)0.127 (5)0.044 (5)0.059 (5)0.009 (5)0.025 (5)
C2010.077 (5)0.124 (5)0.046 (4)0.018 (5)0.019 (4)0.022 (5)
Geometric parameters (Å, º) top
Sn1—C32.112 (7)C21—C221.4946 (10)
Sn1—C42.124 (7)C21—C2011.4949 (10)
Sn1—C52.117 (7)C21—H2110.963
Sn1—Cl22.5561 (18)C21—H2120.963
Sn1—O62.345 (4)C21—H2130.961
Sn11—C122.090 (7)C21—H2140.960
Sn11—C132.108 (6)C22—C231.4951 (10)
Sn11—C142.088 (7)C22—H2210.967
Sn11—O9i2.269 (5)C22—H2220.969
Sn11—O102.286 (5)C23—H2310.960
C3—H310.949C23—H2320.958
C3—H320.960C23—H2330.962
C3—H330.969C24—C251.4949 (10)
C4—H410.955C24—C2511.4950 (10)
C4—H420.966C24—C2011.58 (2)
C4—H430.960C24—H2411.143
C5—H510.955C24—H2420.962
C5—H520.956C24—H2431.113
C5—H530.951C24—H2441.147
O6—S71.460 (5)C25—C261.4953 (10)
S7—O81.451 (5)C25—C2511.40 (3)
S7—O91.485 (4)C25—H2510.954
S7—O101.487 (4)C25—H2520.956
C12—H1210.957C25—H2431.247
C12—H1220.961C26—C271.479 (15)
C12—H1230.964C26—C2511.4949 (10)
C13—H1310.967C26—H2610.950
C13—H1320.955C26—H2620.950
C13—H1330.955C26—H2630.950
C14—H1410.953C26—H2640.950
C14—H1420.954C27—H2710.962
C14—H1430.957C27—H2720.958
N15—C161.469 (8)C27—H2730.960
N15—C201.4958 (10)C28—C291.466 (9)
N15—C241.399 (11)C28—H2810.968
N15—C281.539 (8)C28—H2820.976
N15—C2011.4949 (10)C29—C301.475 (8)
C16—C171.478 (8)C29—H2910.974
C16—H1610.982C29—H2920.974
C16—H1620.979C30—C311.467 (9)
C17—C181.506 (9)C30—H3010.970
C17—H1710.965C30—H3020.975
C17—H1720.959C31—H3110.958
C18—C191.477 (9)C31—H3120.962
C18—H1810.965C31—H3130.960
C18—H1820.971C251—H25110.961
C19—H1910.960C251—H25120.959
C19—H1920.959C251—H2411.267
C19—H1930.959C251—H2611.291
C20—C211.4948 (10)C201—H20110.960
C20—C2011.10 (3)C201—H20120.960
C20—H2010.952C201—H2441.238
C20—H2020.956H242—H2440.681
Cl2—Sn1—C394.0 (2)C25—C24—C25155.8 (12)
Cl2—Sn1—C493.7 (2)N15—C24—C20159.9 (6)
C3—Sn1—C4117.4 (4)C25—C24—C201168.3 (14)
Cl2—Sn1—C590.5 (2)C251—C24—C201135.4 (14)
C3—Sn1—C5123.8 (4)N15—C24—H241145.6
C4—Sn1—C5118.2 (4)C25—C24—H241100.2
Cl2—Sn1—O6177.89 (12)C251—C24—H24155.5
C3—Sn1—O688.0 (2)C201—C24—H24187.3
C4—Sn1—O684.6 (3)N15—C24—H242118.1
C5—Sn1—O689.1 (3)C25—C24—H24287.9
Sn1—C3—H31109.5C251—C24—H24297.3
Sn1—C3—H32109.2C201—C24—H24287.0
H31—C3—H32109.4H241—C24—H24266.0
Sn1—C3—H33109.6N15—C24—H243102.1
H31—C3—H33109.6C25—C24—H24354.8
H32—C3—H33109.5C251—C24—H24397.4
Sn1—C4—H41110.1C201—C24—H243115.2
Sn1—C4—H42110.4H241—C24—H243101.5
H41—C4—H42109.2N15—C24—H24497.5
Sn1—C4—H43109.4C25—C24—H244124.3
H41—C4—H43108.4C251—C24—H244117.2
H42—C4—H43109.4C201—C24—H24451.1
Sn1—C5—H51109.2H241—C24—H24465.1
Sn1—C5—H52108.9H242—C24—H24344.3
H51—C5—H52109.3H242—C24—H24436.4
Sn1—C5—H53109.7H243—C24—H24474.9
H51—C5—H53110.2C24—C25—C26115.5 (8)
H52—C5—H53109.4C24—C25—C25162.1 (6)
Sn1—O6—S7134.4 (2)C26—C25—C25162.1 (6)
O6—S7—O8112.4 (3)C24—C25—H251107.2
O6—S7—O9108.5 (3)C26—C25—H251126.4
O8—S7—O9110.2 (3)C251—C25—H251118.7
O6—S7—O10107.4 (2)C24—C25—H252120.1
O8—S7—O10109.3 (3)C26—C25—H25283.8
O9—S7—O10108.9 (3)C251—C25—H252137.2
Sn11ii—O9—S7126.7 (2)H251—C25—H252101.8
S7—O10—Sn11133.5 (3)C24—C25—H24346.8
O10—Sn11—O9i176.23 (15)C26—C25—H243113.6
O10—Sn11—C1293.2 (2)C251—C25—H24396.4
O9i—Sn11—C1284.1 (2)H251—C25—H243119.1
O10—Sn11—C1389.6 (2)H252—C25—H24373.3
O9i—Sn11—C1394.0 (2)C25—C26—C27112.0 (9)
C12—Sn11—C13121.2 (4)C25—C26—C25155.8 (12)
O10—Sn11—C1485.3 (2)C27—C26—C251148.9 (19)
O9i—Sn11—C1493.6 (2)C25—C26—H261108.5
C12—Sn11—C14119.2 (4)C27—C26—H261108.6
C13—Sn11—C14119.6 (4)C251—C26—H26158.8
Sn11—C12—H121108.5C25—C26—H262109.2
Sn11—C12—H122109.1C27—C26—H262109.1
H121—C12—H122110.0C251—C26—H262102.0
Sn11—C12—H123109.3H261—C26—H262109.5
H121—C12—H123109.1C25—C26—H263148.8
H122—C12—H123110.9C27—C26—H26398.9
Sn11—C13—H131110.7C251—C26—H26399.0
Sn11—C13—H132110.1H261—C26—H26363.1
H131—C13—H132108.5H262—C26—H26353.9
Sn11—C13—H133108.9C25—C26—H26462.9
H131—C13—H133109.5C27—C26—H26498.8
H132—C13—H133109.1C251—C26—H26498.9
Sn11—C14—H141110.8H261—C26—H264152.3
Sn11—C14—H142108.2H262—C26—H26455.7
H141—C14—H142110.3H263—C26—H264109.5
Sn11—C14—H143109.2C26—C27—H271109.8
H141—C14—H143109.6C26—C27—H272108.9
H142—C14—H143108.6H271—C27—H272109.1
C16—N15—C20112.5 (8)C26—C27—H273110.5
C16—N15—C24124.8 (8)H271—C27—H273109.6
C20—N15—C24108.5 (7)H272—C27—H273109.0
C16—N15—C28107.4 (6)N15—C28—C29114.9 (8)
C20—N15—C28108.3 (7)N15—C28—H281110.3
C24—N15—C2892.5 (8)C29—C28—H281108.8
C16—N15—C201135.5 (12)N15—C28—H282106.8
C24—N15—C20166.0 (11)C29—C28—H282106.2
C28—N15—C201115.4 (14)H281—C28—H282109.6
N15—C16—C17112.6 (8)C28—C29—C30118.1 (10)
N15—C16—H161108.1C28—C29—H291106.7
C17—C16—H161109.2C30—C29—H291105.9
N15—C16—H162107.9C28—C29—H292108.0
C17—C16—H162108.9C30—C29—H292107.6
H161—C16—H162110.1H291—C29—H292110.4
C16—C17—C18108.2 (8)C29—C30—C31116.5 (11)
C16—C17—H171110.1C29—C30—H301107.9
C18—C17—H171110.8C31—C30—H301106.2
C16—C17—H172109.0C29—C30—H302107.7
C18—C17—H172108.1C31—C30—H302108.6
H171—C17—H172110.5H301—C30—H302110.0
C17—C18—C19109.8 (13)C30—C31—H311109.4
C17—C18—H181110.0C30—C31—H312109.5
C19—C18—H181109.7H311—C31—H312109.8
C17—C18—H182109.0C30—C31—H313109.3
C19—C18—H182109.0H311—C31—H313109.2
H181—C18—H182109.4H312—C31—H313109.6
C18—C19—H191108.8C24—C251—C26115.5 (8)
C18—C19—H192109.1C24—C251—C2562.1 (6)
H191—C19—H192109.6C26—C251—C2562.1 (6)
C18—C19—H193109.5C24—C251—H2511120.8
H191—C19—H193109.7C26—C251—H2511121.7
H192—C19—H193110.1C25—C251—H2511138.1
N15—C20—C21124.6 (8)C24—C251—H2512102.6
N15—C20—C20168.5 (7)C26—C251—H2512101.9
C21—C20—C20168.5 (7)C25—C251—H2512142.1
N15—C20—H201113.9H2511—C251—H251279.8
C21—C20—H201111.8C24—C251—H24148.0
C201—C20—H201108.7C26—C251—H241116.6
N15—C20—H20290.5C25—C251—H24199.4
C21—C20—H20289.9H2511—C251—H241111.3
C201—C20—H202128.2H2512—C251—H24154.8
H201—C20—H202123.0C24—C251—H261154.5
C20—C21—C22108.9 (8)C26—C251—H26139.0
C22—C21—C201125.2 (17)C25—C251—H26196.6
C20—C21—H211109.5H2511—C251—H26184.2
C22—C21—H211116.8H2512—C251—H26185.8
C201—C21—H211117.3H241—C251—H261131.5
C20—C21—H212105.5C24—C201—C21154 (3)
C22—C21—H212111.5C24—C201—N1554.1 (6)
C201—C21—H212120.6C21—C201—N15124.7 (8)
H211—C21—H2129.4C24—C201—C20122.0 (7)
C20—C21—H213100.6C21—C201—C2068.5 (7)
C22—C21—H213113.8N15—C201—C2068.5 (7)
C201—C21—H213117.0C24—C201—H201195.2
H211—C21—H21312.3C21—C201—H201163.6
H212—C21—H2134.9N15—C201—H2011125.8
C20—C21—H214105.4C20—C201—H2011127.6
C22—C21—H214116.6C24—C201—H201291.4
C201—C21—H214116.4C21—C201—H2012103.5
H211—C21—H2144.9N15—C201—H2012128.0
H212—C21—H2145.8C20—C201—H2012120.6
H213—C21—H2147.5H2011—C201—H201290.7
C21—C22—C23101.9 (13)C24—C201—H24446.1
C21—C22—H221109.7C21—C201—H244111.1
C23—C22—H221111.8N15—C201—H24488.8
C21—C22—H222112.9C20—C201—H244147.6
C23—C22—H222111.8H2011—C201—H24449.1
H221—C22—H222108.7H2012—C201—H24491.4
C22—C23—H231108.6C24—H241—C25176.5
C22—C23—H232110.0C24—H242—H24486.7
H231—C23—H232109.4C24—H243—C2578.4
C22—C23—H233109.4H242—H244—C2456.9
H231—C23—H233109.5H242—H244—C201138.4
H232—C23—H233109.9C24—H244—C20182.8
N15—C24—C25113.9 (8)C26—H261—C25182.2
N15—C24—C251143.6 (15)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1/2, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H161···O8iii0.982.503.386 (18)150 (1)
C12—H123···O60.962.463.311 (18)148 (1)
C28—H281···O8iii0.972.433.195 (18)136 (1)
C25—H251···O8iii0.952.483.434 (18)175 (1)
Symmetry code: (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula(C16H36N)[Sn2(CH3)6Cl(SO4)]
Mr701.60
Crystal system, space groupOrthorhombic, Aba2
Temperature (K)175
a, b, c (Å)27.2051 (6), 20.4336 (5), 11.4370 (2)
V3)6357.8 (3)
Z8
Radiation typeMo Kα
µ (mm1)1.75
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerAgilent Xcalibur (Sapphire3, Gemini)
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.651, 1.000
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
59083, 8068, 7179
Rint0.049
(sin θ/λ)max1)0.691
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.053, 1.07
No. of reflections7179
No. of parameters301
No. of restraints33
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.44, 2.06
Absolute structureFlack (1983), 3709 Friedel pairs
Absolute structure parameter0.05 (4)

Computer programs: CrysAlis PRO (Agilent, 2010), SUPERFLIP (Palatinus & Chapuis, 2007), CRYSTALS (Betteridge et al., 2003), OLEX2 (Dolomanov et al., 2009).

Selected bond lengths (Å) top
Sn1—C32.112 (7)Sn11—C122.090 (7)
Sn1—C42.124 (7)Sn11—C132.108 (6)
Sn1—C52.117 (7)Sn11—C142.088 (7)
Sn1—Cl22.5561 (18)Sn11—O9i2.269 (5)
Sn1—O62.345 (4)Sn11—O102.286 (5)
Symmetry code: (i) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H161···O8ii0.9822.5003.386 (18)150.0 (2)
C28—H281···O8ii0.9682.4263.195 (18)136.1 (3)
C25—H251···O8ii0.9542.4823.434 (18)175.4 (3)
Symmetry code: (ii) x, y+1/2, z1/2.
 

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAziz-ur-Rehman, Ali, S., Najam-ul-Haq, M., Shahzadi, S. & Wurst, K. (2006). Acta Cryst. E62, m451–m453.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCooper, R. I., Thorn, A. & Watkin, D. J. (2012). J. Appl. Cryst. 45, 1057–1060.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDiallo, W., Diassé-Sarr, A., Diop, L., Mahieu, B., Biesemans, M., Willem, R., Kociok- Köhn, G. & Molloy, K. C. (2009). SCSCC6, X, 207–212.  Google Scholar
First citationDiop, T., Diop, L. & Lee, A. van der (2012). Acta Cryst. E68, m1380–m1381.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMolloy, K. C., Quill, K., Cunningham, D. C., McArdle, P. & Higgins, T. (1989). J. Chem. Soc. Dalton Trans. pp. 267–273.  CrossRef Web of Science Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPrince, E. (1982). In Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationSadiq-ur-Rehman,, Ali, S., Mazhar, M. & Parvez, M. (2004). Acta Cryst. E60, m1394–m1396.  Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZhang, J., Ma, C. & Zhang, R. (2008). J. Inorg. Organomet. Polym. Mater. 18, 296–299.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds