[Journal logo]

Volume 69 
Part 7 
Pages m406-m407  
July 2013  

Received 6 June 2013
Accepted 15 June 2013
Online 22 June 2013

Key indicators
Single-crystal X-ray study
T = 175 K
Mean [sigma](C-C) = 0.018 Å
Disorder in main residue
R = 0.053
wR = 0.053
Data-to-parameter ratio = 23.9
Details
Open access

Poly[tetrabutylammonium [chloridohexamethyl-[mu]3-sulfato-distannate(IV)]]

aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bInstitut Européen des Membranes, Université de Montpellier II, 34000 Montpellier, France
Correspondence e-mail: tijchimia@yahoo.fr

In the structure of the title coordination polymer, {(C16H36N)[Sn2(CH3)6Cl(SO4)]}n, the two independent SnIV atoms are coordinated in a trigonal-bipyramidal manner by three methyl groups in the equatorial plane and in the axial positions by either two O atoms of bridging SO42- anions or by a Cl atom and one O atom of a bridging SO42- anion, respectively. The [Sn2(CH3)6Cl(SO4)]- anion forms an infinite zigzag chain parallel to the c axis. The cations are situated between these chains. Two of the four butyl groups of the cation are partially disordered over two sets of sites with site occupancies of 0.79 (2):0.21 (2) and 0.75 (2):0.25 (2), respectively. Weak C-H...O hydrogen-bonding interactions help to consolidate the crystal packing.

Related literature

For related structures, see: Molloy et al. (1989[Molloy, K. C., Quill, K., Cunningham, D. C., McArdle, P. & Higgins, T. (1989). J. Chem. Soc. Dalton Trans. pp. 267-273.]); Zhang et al. (2008[Zhang, J., Ma, C. & Zhang, R. (2008). J. Inorg. Organomet. Polym. Mater. 18, 296-299.]); Sadiq-ur-Rehman et al. (2004[Sadiq-ur-Rehman,, Ali, S., Mazhar, M. & Parvez, M. (2004). Acta Cryst. E60, m1394-m1396.]); Aziz-ur-Rehman et al. (2006[Aziz-ur-Rehman, Ali, S., Najam-ul-Haq, M., Shahzadi, S. & Wurst, K. (2006). Acta Cryst. E62, m451-m453.]); Diallo et al. (2009[Diallo, W., Diassé-Sarr, A., Diop, L., Mahieu, B., Biesemans, M., Willem, R., Kociok- Köhn, G. & Molloy, K. C. (2009). SCSCC6, X, 207-212.]); Diop et al. (2012[Diop, T., Diop, L. & Lee, A. van der (2012). Acta Cryst. E68, m1380-m1381.]). For details of the use of constraints and restraints during the structure refinement, see: Cooper et al. (2010[Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100-1107.], 2012[Cooper, R. I., Thorn, A. & Watkin, D. J. (2012). J. Appl. Cryst. 45, 1057-1060.]). For background to the weighting schemes used in the refinement, see: Prince (1982[Prince, E. (1982). In Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]); Watkin (1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.]).

[Scheme 1]

Experimental

Crystal data
  • (C16H36N)[Sn2(CH3)6Cl(SO4)]

  • Mr = 701.60

  • Orthorhombic, A b a 2

  • a = 27.2051 (6) Å

  • b = 20.4336 (5) Å

  • c = 11.4370 (2) Å

  • V = 6357.8 (3) Å3

  • Z = 8

  • Mo K[alpha] radiation

  • [mu] = 1.75 mm-1

  • T = 175 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Agilent Xcalibur (Sapphire3, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.651, Tmax = 1.000

  • 59083 measured reflections

  • 8068 independent reflections

  • 7179 reflections with I > 2.0[sigma](I)

  • Rint = 0.049

Refinement
  • R[F2 > 2[sigma](F2)] = 0.053

  • wR(F2) = 0.053

  • S = 1.07

  • 7179 reflections

  • 301 parameters

  • 33 restraints

  • H-atom parameters constrained

  • [Delta][rho]max = 1.44 e Å-3

  • [Delta][rho]min = -2.06 e Å-3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3709 Friedel pairs

  • Flack parameter: 0.05 (4)

Table 1
Selected bond lengths (Å)

Sn1-C3 2.112 (7)
Sn1-C4 2.124 (7)
Sn1-C5 2.117 (7)
Sn1-Cl2 2.5561 (18)
Sn1-O6 2.345 (4)
Sn11-C12 2.090 (7)
Sn11-C13 2.108 (6)
Sn11-C14 2.088 (7)
Sn11-O9i 2.269 (5)
Sn11-O10 2.286 (5)
Symmetry code: (i) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
C16-H161...O8ii 0.98 2.50 3.386 (18) 150 (1)
C28-H281...O8ii 0.97 2.43 3.195 (18) 136 (1)
C25-H251...O8ii 0.95 2.48 3.434 (18) 175 (1)
Symmetry code: (ii) [x, y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: CRYSTALS.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2750 ).


References

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Aziz-ur-Rehman, Ali, S., Najam-ul-Haq, M., Shahzadi, S. & Wurst, K. (2006). Acta Cryst. E62, m451-m453.  [CSD] [CrossRef] [ChemPort] [IUCr Journals]
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  [Web of Science] [CrossRef] [IUCr Journals]
Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100-1107.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Cooper, R. I., Thorn, A. & Watkin, D. J. (2012). J. Appl. Cryst. 45, 1057-1060.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Diallo, W., Diassé-Sarr, A., Diop, L., Mahieu, B., Biesemans, M., Willem, R., Kociok- Köhn, G. & Molloy, K. C. (2009). SCSCC6, X, 207-212.
Diop, T., Diop, L. & Lee, A. van der (2012). Acta Cryst. E68, m1380-m1381.  [CSD] [CrossRef] [ChemPort] [IUCr Journals]
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Flack, H. D. (1983). Acta Cryst. A39, 876-881.  [CrossRef] [IUCr Journals]
Molloy, K. C., Quill, K., Cunningham, D. C., McArdle, P. & Higgins, T. (1989). J. Chem. Soc. Dalton Trans. pp. 267-273.  [CrossRef]
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Prince, E. (1982). In Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.
Sadiq-ur-Rehman,, Ali, S., Mazhar, M. & Parvez, M. (2004). Acta Cryst. E60, m1394-m1396.
Watkin, D. (1994). Acta Cryst. A50, 411-437.  [CrossRef] [IUCr Journals]
Zhang, J., Ma, C. & Zhang, R. (2008). J. Inorg. Organomet. Polym. Mater. 18, 296-299.  [CSD] [CrossRef] [ChemPort]


Acta Cryst (2013). E69, m406-m407   [ doi:10.1107/S1600536813016723 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.